1. Model Log 介绍
Model Log 是一款基于 Python3 的轻量级机器学习(Machine Learning)、深度学习(Deep Learning)模型训练评估指标可视化工具,与 TensorFlow、Pytorch、PaddlePaddle结合使用,可以记录模型训练过程当中的超参数、Loss、Accuracy、Precision、F1值等,并以曲线图的形式进行展现对比,轻松三步即可实现。
GitHub项目地址:https://github.com/NLP-LOVE/Model_Log
通过调节超参数的方式多次训练模型,并使用 Model Log 工具进行记录,可以很直观的进行模型对比,堪称调参神器。以下是使用工具后模型训练时 Loss 的变化曲线图。访问线上体验版:http://mantchs.com/model_log.html
通过上图可以很清晰的看出两个模型的训练效果,而且在表格当中高亮显示修改过的超参数,方便进行模型分析。
2. Model Log 特性
- 轻量级、无需任何配置、极简API、开箱即用。
- 只需要把模型的超参数和评估指标数据通过API添加即可,轻松三步即可实现。
- 高亮显示修改过的超参数,方便进行模型分析。
- 自动检测和获取正在训练的模型数据,并进行可视化,无需人工参与。
- 使用 SQLite 轻量级本地数据库存储,可供多个用户同时使用,保证每个用户看到的数据是独立的。
- 可视化组件采用 Echarts 框架,交互式曲线图设计,可清晰看到每个 epoch 周期的指标数据和变化趋势。
3. Model Log 演示地址
访问线上体验版:http://mantchs.com/model_log.html
4. Model Log 安装
Python3 版本以上,通过 pip 进行安装即可。
pip install model-log
注意:若安装的过程中出现以下情况,说明 model-log 命令已经安装到Python下的bin目录中,如果直接输入 model-log 可能会出现 command not found,可以直接到bin目录下执行。
5. Model Log 使用
5.1 启动 web 端
Model Log 安装成功后,Linux、Mac用户直接终端输入以下命令,Windows用户在cmd窗口输入:
model-log
默认启动 5432端口,可以在启动命令上使用参数 -p=5000 指定端口号。若提示命令不存在,可以直接到Python/3.7/bin目录下执行。
启动后可在浏览器输入网址进入:http://127.0.0.1:5432
也可访问线上体验版:http://mantchs.com/model_log.html
-
web首页是项目列表,一个项目可以有多个模型,这些模型可以在曲线图中直观比较。
-
web 端会自动检测是否有新模型开始训练,如果有,直接会跳转到相应的 loss 等评价指标页,同时会自动获取指标数据进行呈现。
-
可供多个用户使用,添加昵称即可,SQLite 轻量级本地数据库存储,保证每个用户看到的数据是独立的。
-
通过点击曲线图下方的图例,可切换不同模型的评估曲线。
5.2 Model Log API使用
轻松三步即可使用
-
第一步:先创建 ModelLog 类,并添加必要的属性
from model_log.modellog import ModelLog """ :param nick_name: str,昵称,多人使用下可起到数据隔离。 :param project_name: str,项目名称。 :param project_remark: str,项目备注,默认为空。 项目名称如不存在会新建 """ model_log = ModelLog(nick_name='mantch', project_name='demo实体识别', project_remark='') """ :param model_name: str,模型名称 """ model_log.add_model_name(model_name='BILSTM_CRF模型') """ :param remark: str,模型备注 """ model_log.add_model_remark(remark='模型备注') """ :param param_dict: dict,训练参数字典 :param param_type: str,参数类型,例如:TF参数、Word2Vec参数等。 """ model_log.add_param(param_dict={'lr':0.01}, param_type='tf_param')
-
第二步:模型训练的每次 epoch (周期)可以添加评估指标数据,评估指标可以进行以下选择。
第一次调用该 API 时,会把以上设置的数据(模型名称、备注等)持久化到 SQLite 数据库,并且 web 端会自动获取评估指标数据进行图形化展示。
""" :param metric_name: str,评估指标名称, 可选择['train_loss', 'test_loss', 'test_acc', 'test_recall', 'test_precision', 'test_F1'] :param metric_value: float,评估指标数值。 :param epoch: int,训练周期 metric_name 参数只可以选择以上六种 第一次调用该 API 时,会把以上设置的数据(模型名称、备注等)持久化到 SQLite 数据库,并且 web 端会自动获取数据进行图形化展示。 可以在每个 epoch 周期的最后使用该 API 添加训练集和测试集的评估指标,web 端会自动获取该数据。 """ model_log.add_metric(metric_name='train_loss', metric_value=4.5646, epoch=1)
-
第三步:模型训练完成后,可以添加最好的一次评估数据。
""" :param best_name: str,最佳评估指标名称, :param best_value: float,最佳评估指标数值。 :param best_epoch: int,训练周期 添加当前模型训练中最佳的评估数据,一般放到模型训练的最后进行添加。 """ model_log.add_best_result(best_name='best_loss', best_value=1.2122, best_epoch=30) """ 关闭 SQLite 数据库连接 """ model_log.close()
5.3 Model Log 使用示例
MIST手写数字识别:https://github.com/NLP-LOVE/Model_Log/blob/master/demo_TF_MIST.py
来源:oschina
链接:https://my.oschina.net/u/4275654/blog/4327130