问题
I have a list of tickers (tickerStrings
) that I to download all at once. When I try to use pandas' read_csv
it doesn't read the csv file in the way it does when I download the data from yfinance.
I usually access my data by ticker like this: data['AAPL']
or data['AAPL'].Close
, but when I read the data from the csv file it does not let me do that.
if path.exists(data_file):
data = pd.read_csv(data_file, low_memory=False)
data = pd.DataFrame(data)
print(data.head())
else:
data = yf.download(tickerStrings, group_by="Ticker", period=prd, interval=intv)
data.to_csv(data_file)
Here's the print output:
Unnamed: 0 OLN OLN.1 OLN.2 OLN.3 ... W.1 W.2 W.3 W.4 W.5
0 NaN Open High Low Close ... High Low Close Adj Close Volume
1 Datetime NaN NaN NaN NaN ... NaN NaN NaN NaN NaN
2 2020-06-25 09:30:00-04:00 11.1899995803833 11.220000267028809 11.010000228881836 11.079999923706055 ... 201.2899932861328 197.3000030517578 197.36000061035156 197.36000061035156 112156
3 2020-06-25 09:45:00-04:00 11.130000114440918 11.260000228881836 11.100000381469727 11.15999984741211 ... 200.48570251464844 196.47999572753906 199.74000549316406 199.74000549316406 83943
4 2020-06-25 10:00:00-04:00 11.170000076293945 11.220000267028809 11.119999885559082 11.170000076293945 ... 200.49000549316406 198.19000244140625 200.4149932861328 200.4149932861328 88771
The error I get when trying to access the data:
Traceback (most recent call last):
File "getdata.py", line 49, in processData
avg = data[x].Close.mean()
AttributeError: 'Series' object has no attribute 'Close'
回答1:
Download all tickers into single dataframe with single level column headers
Option 1
- When downloading single stock ticker data, the returned dataframe column names are a single level, but don't have a ticker column.
- This will download data for each ticker, add a ticker column, and create a single dataframe from all desired tickers.
import yfinance as yf
import pandas as pd
tickerStrings = ['AAPL', 'MSFT']
df_list = list()
for ticker in tickerStrings:
data = yf.download(ticker, group_by="Ticker", period='2d')
data['ticker'] = ticker # add this column becasue the dataframe doesn't contain a column with the ticker
df_list.append(data)
# combine all dataframes into a single dataframe
df = pd.concat(df_list)
# save to csv
df.to_csv('ticker.csv')
Option 2
- Download all the tickers and unstack the levels
group_by='Ticker'
puts the ticker atlevel=0
of the column name
tickerStrings = ['AAPL', 'MSFT']
df = yf.download(tickerStrings, group_by='Ticker', period='2d')
df = df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
Read yfinance
csv already stored with multi-level column names
- If you wish to keep, and read in a file with a multi-level column index, use the following code, which will return the dataframe to its original form.
df = pd.read_csv('test.csv', header=[0, 1])
df.drop([0], axis=0, inplace=True) # drop this row because it only has one column with Date in it
df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')] = pd.to_datetime(df[('Unnamed: 0_level_0', 'Unnamed: 0_level_1')], format='%Y-%m-%d') # convert the first column to a datetime
df.set_index(('Unnamed: 0_level_0', 'Unnamed: 0_level_1'), inplace=True) # set the first column as the index
df.index.name = None # rename the index
- The issue is,
tickerStrings
is a list of tickers, which results in a final dataframe with multi-level column names
AAPL MSFT
Open High Low Close Adj Close Volume Open High Low Close Adj Close Volume
Date
1980-12-12 0.513393 0.515625 0.513393 0.513393 0.405683 117258400 NaN NaN NaN NaN NaN NaN
1980-12-15 0.488839 0.488839 0.486607 0.486607 0.384517 43971200 NaN NaN NaN NaN NaN NaN
1980-12-16 0.453125 0.453125 0.450893 0.450893 0.356296 26432000 NaN NaN NaN NaN NaN NaN
1980-12-17 0.462054 0.464286 0.462054 0.462054 0.365115 21610400 NaN NaN NaN NaN NaN NaN
1980-12-18 0.475446 0.477679 0.475446 0.475446 0.375698 18362400 NaN NaN NaN NaN NaN NaN
- When this is saved to a csv, it looks like the following example, and results in a dataframe like you're having issues with.
,AAPL,AAPL,AAPL,AAPL,AAPL,AAPL,MSFT,MSFT,MSFT,MSFT,MSFT,MSFT
,Open,High,Low,Close,Adj Close,Volume,Open,High,Low,Close,Adj Close,Volume
Date,,,,,,,,,,,,
1980-12-12,0.5133928656578064,0.515625,0.5133928656578064,0.5133928656578064,0.40568336844444275,117258400,,,,,,
1980-12-15,0.4888392984867096,0.4888392984867096,0.4866071343421936,0.4866071343421936,0.3845173120498657,43971200,,,,,,
1980-12-16,0.453125,0.453125,0.4508928656578064,0.4508928656578064,0.3562958240509033,26432000,,,,,,
Flatten multi-level columns into a single level and add a ticker column
- If the ticker symbol is
level=0
(top) of the column names- When
group_by='Ticker'
is used
- When
df.stack(level=0).rename_axis(['Date', 'Ticker']).reset_index(level=1)
- If the ticker symbol is
level=1
(bottom) of the column names
df.stack(level=1).rename_axis(['Date', 'Ticker']).reset_index(level=1)
Download each ticker and save it to a separate file
- I recommend downloading and saving each ticker individually, which would look something like the following:
import yfinance as yf
import pandas as pd
tickerStrings = ['AAPL', 'MSFT']
for ticker in tickerStrings:
data = yf.download(ticker, group_by="Ticker", period=prd, interval=intv)
data['ticker'] = ticker # add this column becasue the dataframe doesn't contain a column with the ticker
data.to_csv(f'ticker_{ticker}.csv') # ticker_AAPL.csv for example
data
will look like
Open High Low Close Adj Close Volume ticker
Date
1986-03-13 0.088542 0.101562 0.088542 0.097222 0.062205 1031788800 MSFT
1986-03-14 0.097222 0.102431 0.097222 0.100694 0.064427 308160000 MSFT
1986-03-17 0.100694 0.103299 0.100694 0.102431 0.065537 133171200 MSFT
1986-03-18 0.102431 0.103299 0.098958 0.099826 0.063871 67766400 MSFT
1986-03-19 0.099826 0.100694 0.097222 0.098090 0.062760 47894400 MSFT
- the resulting csv will look like
Date,Open,High,Low,Close,Adj Close,Volume,ticker
1986-03-13,0.0885416641831398,0.1015625,0.0885416641831398,0.0972222238779068,0.0622050017118454,1031788800,MSFT
1986-03-14,0.0972222238779068,0.1024305522441864,0.0972222238779068,0.1006944477558136,0.06442664563655853,308160000,MSFT
1986-03-17,0.1006944477558136,0.1032986119389534,0.1006944477558136,0.1024305522441864,0.0655374601483345,133171200,MSFT
1986-03-18,0.1024305522441864,0.1032986119389534,0.0989583358168602,0.0998263880610466,0.06387123465538025,67766400,MSFT
1986-03-19,0.0998263880610466,0.1006944477558136,0.0972222238779068,0.0980902761220932,0.06276042759418488,47894400,MSFT
Read in multiple files saved with the previous section and create a single dataframe
import pandas as pd
from pathlib import Path
# set the path to the files
p = Path('c:/path_to_files')
# find the files
files = list(p.glob('ticker_*.csv'))
# read the files into a dataframe
df_list = list()
for file in files:
df_list.append(pd.read_csv(file))
# combine dataframes
df = pd.concat(df_list)
来源:https://stackoverflow.com/questions/63107594/how-to-deal-with-multi-level-column-names-downloaded-with-yfinance