Benchmark模式会提升计算速度,但是由于计算中有随机性,每次网络前馈结果略有差异。
torch.backends.cudnn.benchmark = True
1
如果想要避免这种结果波动,设置:
torch.backends.cudnn.deterministic = True
版权声明:本文为CSDN博主「wang xiang」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_40178291/article/details/101160834
总的来说,大部分情况下,设置这个 flag 可以让内置的 cuDNN 的 auto-tuner 自动寻找最适合当前配置的高效算法,来达到优化运行效率的问题。
一般来讲,应该遵循以下准则:
- 如果网络的输入数据维度或类型上变化不大,设置 torch.backends.cudnn.benchmark = true 可以增加运行效率;
- 如果网络的输入数据在每次 iteration 都变化的话,会导致 cnDNN 每次都会去寻找一遍最优配置,这样反而会降低运行效率。
来源:oschina
链接:https://my.oschina.net/u/4278651/blog/4296685