python多种读写excel等数据文件的方式(收藏篇)

无人久伴 提交于 2020-08-11 23:44:40

前言:

python处理数据文件的途径有很多种,可以操作的文件类型主要包括文本文件(csv、txt、json等)、excel文件、数据库文件、api等其他数据文件。下面小编整理下python到底有哪些方式可以读写数据文件。

1. read、readline、readlines

read() :一次性读取整个文件内容。推荐使用read(size)方法,size越大运行时间越长
readline() :每次读取一行内容。内存不够时使用,一般不太用
readlines() :一次性读取整个文件内容,并按行返回到list,方便我们遍历

2. 内置模块csv

python内置了csv模块用于读写csv文件,csv是一种逗号分隔符文件,是数据科学中最常见的数据存储格式之一。csv模块能轻松完成各种体量数据的读写操作,当然大数据量需要代码层面的优化。

csv模块读取文件:

# 读取csv文件
import csv
with open('test.csv','r') as myFile:
    lines=csv.reader(myFile)
    for line in lines:
        print (line)

csv模块写入文件:

import csv
with open('test.csv','w+') as myFile:
    myWriter=csv.writer(myFile)
    # writerrow一行一行写入
    myWriter.writerow([7,8,9])
    myWriter.writerow([8,'h','f'])
    # writerow多行写入
    myList=[[1,2,3],[4,5,6]]
    myWriter.writerows(myList)

3. numpy库

loadtxt方法:

loadtxt用来读取文本文件(包含txt、csv等)以及.gz 或.bz2格式压缩文件,前提是文件数据每一行必须要有数量相同的值。

import numpy as np
# loadtxt()中的dtype参数默认设置为float
# 这里设置为str字符串便于显示
np.loadtxt('test.csv',dtype=str)
# out:array(['1,2,3', '4,5,6', '7,8,9'], dtype='<U5')

load方法:

load用来读取numpy专用的.npy,.npz或者pickled持久化文件。

import numpy as np
# 先生成npy文件
np.save('test.npy', np.array([[1, 2, 3], [4, 5, 6]]))
# 使用load加载npy文件
np.load('test.npy')
'''
out:array([[1, 2, 3],
       [4, 5, 6]])
'''

fromfile方法:

fromfile方法可以读取简单的文本数据或二进制数据,数据来源于tofile方法保存的二进制数据。读取数据时需要用户指定元素类型,并对数组的形状进行适当的修改。

import numpy as np
x = np.arange(9).reshape(3,3)
x.tofile('test.bin')
np.fromfile('test.bin',dtype=np.int)
# out:array([0, 1, 2, 3, 4, 5, 6, 7, 8])

4. pandas库

pandas是数据处理最常用的分析库之一,可以读取各种各样格式的数据文件,一般输出dataframe格式。如:txt、csv、excel、json、剪切板、数据库、html、hdf、parquet、pickled文件、sas、stata等等

read_csv方法:

read_csv方法用来读取csv格式文件,输出dataframe格式。

import pandas as pd
pd.read_csv('test.csv')

read_excel方法:

读取excel文件,包括xlsx、xls、xlsm格式

import pandas as pd
pd.read_excel('test.xlsx')

read_table方法:

通过对sep参数(分隔符)的控制来对任何文本文件读取

read_json方法:

读取json格式文件

df = pd.DataFrame([['a', 'b'], ['c', 'd']],index=['row 1', 'row 2'],columns=['col 1', 'col 2'])
j = df.to_json(orient='split')
pd.read_json(j,orient='split')

read_html方法

读取html表格

read_clipboard方法

读取剪切板内容

read_pickle方法

读取plckled持久化文件

read_sql方法

读取数据库数据,连接好数据库后,传入sql语句即可

read_dhf方法

读取hdf5文件,适合大文件读取

read_parquet方法

读取parquet文件

read_sas方法

读取sas文件

read_stata方法

读取stata文件

read_gbq方法

读取google bigquery数据

5、读写excel文件

python用于读写excel文件的库有很多,除了前面提到的pandas,还有xlrd、xlwt、openpyxl、xlwings等等。

主要模块:

xlrd库

从excel中读取数据,支持xls、xlsx

xlwt库

对excel进行修改操作,不支持对xlsx格式的修改

xlutils库

在xlw和xlrd中,对一个已存在的文件进行修改

openpyxl

主要针对xlsx格式的excel进行读取和编辑

xlwings

对xlsx、xls、xlsm格式文件进行读写、格式修改等操作

xlsxwriter

用来生成excel表格,插入数据、插入图标等表格操作,不支持读取

Microsoft Excel API

需安装pywin32,直接与Excel进程通信,可以做任何在Excel里可以做的事情,但比较慢

6. 操作数据库

python几乎支持对所有数据库的交互,连接数据库后,可以使用sql语句进行增删改查。

主要模块:

pymysql

用于和mysql数据库的交互

sqlalchemy

用于和mysql数据库的交互

cx_Oracle

用于和oracle数据库的交互

sqlite3

内置库,用于和sqlite数据库的交互

pymssql

用于和sql server数据库的交互

pymongo

用于和mongodb非关系型数据库的交互

redis、pyredis

用于和redis非关系型数据库的交互

最后总结:

以上可能不是很完整,有些可能遗忘了,希望大家指出不足之处...欢迎大家点赞,留言,转发,感谢大家的相伴与支持,想要了解更多Python知识以及想学好Python可以关注公众号:【Python的进阶之旅】有惊喜哦!

往期精彩文章:

Python环境搭建—安利Python小白的Python和Pycharm安装详细教程mp.weixin.qq.com图标

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!