一.概念
Fork/Join就是将一个大任务分解(fork)成许多个独立的小任务,然后多线程并行去处理这些小任务,每个小任务处理完得到结果再进行合并(join)得到最终的结果。
流程:任务继承RecursiveTask,重写compute方法,使用ForkJoinPool的submit提交任务,任务在某个线程中运行,工作任务中的compute方法的代码开始对任务进行分析,如果符合条件就进行任务拆分,拆分成多个子任务,每个子任务进行数据的计算或操作,得到结果返回给上一层任务开启线程进行合并,最终通过get获取整体处理结果。【只能将任务1个切分为两个,不能切分为3个或其他数量】
- ForkJoinTask:代表fork/join里面的任务类型,一般用它的两个子类RecursiveTask(任务有返回值)和RecursiveAction(任务没有返回值),任务的处理逻辑包括任务的切分都是在重写compute方法里面进行处理。只有ForkJoinTask任务可以被拆分运行和合并运行。【可查看上篇Future源码分析的类图结构】【ForkJoinTask使用了模板模式进行设计,将ForkJoinTask的执行相关代码进行隐藏,通过提供抽象类(即子类RecursiveTask、RecursiveAction)暴露用户的实际业务处理。】
- RecursiveTask:在进行exec之后会使用一个result的变量进行接受返回的结果;
public abstract class RecursiveTask<V> extends ForkJoinTask<V> { V result; protected abstract V compute(); public final V getRawResult() { return result; } protected final void setRawResult(V value) { result = value; } protected final boolean exec() { result = compute(); return true; } }
- RecursiveAction:在进行exec之后没有返回结果;
public abstract class RecursiveAction extends ForkJoinTask<Void> { protected abstract void compute(); public final Void getRawResult() { return null; } protected final void setRawResult(Void mustBeNull) { } protected final boolean exec() { compute(); return true; } }
- RecursiveTask:在进行exec之后会使用一个result的变量进行接受返回的结果;
- ForkJoinPool:fork/join框架的管理者,最原始的任务都要交给它来处理。它负责控制整个fork/join有多少个工作线程,工作线程的创建、机会都是由它来控制。它还负责workQueue队列的创建和分配,每当创建一个工作线程,它负责分配对应的workQueue,然后它把接到的活都交给工作线程去处理。是整个fork/join的容器。
- ForkJoinPool.WorkQueue:双端队列,负责存储接收的任务;
- ForkJoinWorkerThread:fork/join里面真正干活的”工人“,它继承了Thread,所以本质是一个线程。它有一个ForkJoinPool.WorkQueue的队列存放着它要干的活,接活之前它要向ForkJoinPool注册(registerWorker),拿到相应的workQueue,然后就从workQueue里面拿任务出来处理。它是依附于ForkJoinPool而存活,如果ForkJoinPool销毁了,它也会跟着结束。【每一个ForkJoinWorkerThread线程都具有一个独立的任务等待队列workQueue。】
- 当使用ForkJoinPool进行submit任务提交时,创建1个workQueue将任务放进去,然后进行fork任务切分,如果切分后的任务放的进去之前的workQueue就放进去,不行就随机选取workQueue放进去,如果还放不了就创建一个新的workQueue放进去;
public class ForkJoinWorkerThread extends Thread {
final ForkJoinPool pool;
final ForkJoinPool.WorkQueue workQueue;
protected ForkJoinWorkerThread(ForkJoinPool pool) {
super("aForkJoinWorkerThread");
this.pool = pool;
this.workQueue = pool.registerWorker(this);
}
}
二.用法
以前1+2+3+...+100这样的处理可以用for循环处理,现在使用fork/join来处理:从下面结果可以看到,大任务被不断的拆分成小任务,然后添加到工作线程的队列中,每个小任务都会被工作线程从队列中取出进行运行,然后每个小任务的结果的合并也由工作线程执行,然后不断的汇总成最终结果。【task通过ForkJoinPool来执行,分割的子任务添加到当前工作线程的队列中,进入队列的头部,当一个工作线程中没有任务时,会从其他工作线程的队列尾部获取一个任务。(工作窃取:当前工作线程对应的队列中没有任务了,从其他工作线程对应的队列中取出任务进行操作,然后将操作结果返还给对应队列的线程。)】
public class MyFrokJoinTask extends RecursiveTask<Integer> {
private int begin;
private int end;
public MyFrokJoinTask(int begin, int end) {
this.begin = begin;
this.end = end;
}
public static void main(String[] args) throws Exception {
ForkJoinPool pool = new ForkJoinPool();
ForkJoinTask<Integer> result = pool.submit(new MyFrokJoinTask(1, 100));//提交任务
System.out.println("计算的值:"+result.get());//得到最终的结果
}
@Override
protected Integer compute() {
int sum = 0;
if (end - begin <= 2) {
for (int i = begin; i <= end; i++) {
sum += i;
System.out.println("i:"+i);
}
} else {
MyFrokJoinTask d1 = new MyFrokJoinTask(begin, (begin + end) / 2);
MyFrokJoinTask d2 = new MyFrokJoinTask((begin + end) / 2+1, end);
d1.fork();//任务拆分
d2.fork();//任务拆分
Integer a = d1.join();//每个任务的结果
Integer b = d2.join();//每个任务的结果
sum = a + b;//汇总任务结果
System.out.println("sum:" + sum + ",a:" + a + ",b:" + b);
}
System.out.println("name:"+Thread.currentThread().getName());
return sum;
}
}
//=========结果============
i:1
i:2
name:ForkJoinPool-1-worker-1
i:3
i:4
name:ForkJoinPool-1-worker-1
sum:10,a:3,b:7
name:ForkJoinPool-1-worker-1
i:5
i:6
i:7
name:ForkJoinPool-1-worker-1
sum:28,a:10,b:18
name:ForkJoinPool-1-worker-1
...............
...............
sum:91,a:28,b:63
sum:99,a:45,b:54
name:ForkJoinPool-1-worker-3
name:ForkJoinPool-1-worker-1
i:23
i:24
i:25
name:ForkJoinPool-1-worker-2
sum:135,a:63,b:72
name:ForkJoinPool-1-worker-2
sum:234,a:99,b:135
name:ForkJoinPool-1-worker-3
sum:325,a:91,b:234
name:ForkJoinPool-1-worker-1
sum:1275,a:325,b:950
name:ForkJoinPool-1-worker-1
sum:5050,a:1275,b:3775
name:ForkJoinPool-1-worker-1
计算的值:5050
三.分析
ForkJoinPool
ForkJoinPool forkJoinPool = new ForkJoinPool();
//Runtime.getRuntime().availableProcessors()当前操作系统可以使用的CPU内核数量
public ForkJoinPool() {
this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
defaultForkJoinWorkerThreadFactory, null, false);
}
//this调用到下面这段代码
public ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
boolean asyncMode) {
this(checkParallelism(parallelism), //并行度
checkFactory(factory), //工作线程创建工厂
handler, //异常处理handler
asyncMode ? FIFO_QUEUE : LIFO_QUEUE, //任务队列出队模式 异步:先进先出,同步:后进先出
"ForkJoinPool-" + nextPoolId() + "-worker-");
checkPermission();
}
//上面的this最终调用到下面这段代码
private ForkJoinPool(int parallelism,
ForkJoinWorkerThreadFactory factory,
UncaughtExceptionHandler handler,
int mode,
String workerNamePrefix) {
this.workerNamePrefix = workerNamePrefix;
this.factory = factory;
this.ueh = handler;
this.config = (parallelism & SMASK) | mode;
long np = (long)(-parallelism); // offset ctl counts
this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
}
- parallelism:可并行数量,fork/join框架将依据这个并行数量的设定,决定框架内并行执行的线程数量。并行的每一个任务都会有一个线程进行处理;
- factory:当fork/join创建一个新的线程时,同样会用到线程创建工厂。它实现了ForkJoinWorkerThreadFactory接口,使用默认的的接口实现类DefaultForkJoinWorkerThreadFactory来实现newThread方法创建一个新的工作线程;
public static interface ForkJoinWorkerThreadFactory { /** * Returns a new worker thread operating in the given pool. */ public ForkJoinWorkerThread newThread(ForkJoinPool pool); } static final class DefaultForkJoinWorkerThreadFactory implements ForkJoinWorkerThreadFactory { public final ForkJoinWorkerThread newThread(ForkJoinPool pool) { return new ForkJoinWorkerThread(pool); } }
- handler:异常捕获处理器。当执行的任务出现异常,并从任务中被抛出时,就会被handler捕获;
- asyncMode:fork/join为每一个独立的工作线程准备了对应的待执行任务队列,这个任务队列是使用数组进行组合的双向队列。即可以使用先进先出的工作模式,也可以使用后进先出的工作模式;
Fork()和Join()
fork/join框架中提供的fork()和join()是最重要的两个方法,它们和parallelism(”可并行任务数量“)配合工作,可以导致拆分的子任务T1.1、T1.2甚至TX在fork/join中不同的运行效果(上面1+2....+100的每次运行的子任务都是不同的)。即TX子任务或等待其他已存在的线程运行关联的子任务(sum操作),或在运行TX的线程中”递归“执行其他任务(将1-50进行拆分后的子任务递归运行),或启动一个新的线程执行子任务(运行1-50另一边拆分的任务,即50-100的子任务)。
fork()用于将新创建的子任务放入当前线程的workQueue队列中,fork/join框架将根据当前正在并发执行ForkJoinTask任务的ForkJoinWorkerThread线程状态,决定是让这个任务在队列中等待,还是创建一个新的ForkJoinWorkedThread线程运行它,又或者是唤起其他正在等待任务的ForkJoinWorkerThread线程运行它。
join()用于让当前线程阻塞,直到对应的子任务完成运行并返回执行结果。或者,如果这个子任务存在于当前线程的任务等待队列workQueue中,则取出这个子任务进行”递归“执行,其目的是尽快得到当前子任务的运行结果,然后继续执行。
提交任务:
-
sumbit的第一次提交:ForkJoinPool.submit(ForkJoinTask<T> task) -> externalPush(task) -> externalSubmit(task)
-
submit:
public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) { if (task == null) throw new NullPointerException(); externalPush(task); return task; } public <T> ForkJoinTask<T> submit(Callable<T> task) { ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task); externalPush(job); return job; } public <T> ForkJoinTask<T> submit(Runnable task, T result) { ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result); externalPush(job); return job; } public ForkJoinTask<?> submit(Runnable task) { if (task == null) throw new NullPointerException(); ForkJoinTask<?> job; if (task instanceof ForkJoinTask<?>) // avoid re-wrap job = (ForkJoinTask<?>) task; else job = new ForkJoinTask.AdaptedRunnableAction(task); externalPush(job); return job; }
- externalPush:将任务添加到随机选取的队列中或新创建的队列中;
final void externalPush(ForkJoinTask<?> task) { WorkQueue[] ws; WorkQueue q; int m; int r = ThreadLocalRandom.getProbe();//当前线程的一个随机数 int rs = runState;//当前容器的状态 //如果随机选取的队列还有空位置可以存放、队列加锁锁定成功,任务就放入队列中 if ((ws = workQueues) != null && (m = (ws.length - 1)) >= 0 && (q = ws[m & r & SQMASK]) != null && r != 0 && rs > 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { ForkJoinTask<?>[] a; int am, n, s; if ((a = q.array) != null && (am = a.length - 1) > (n = (s = q.top) - q.base)) { int j = ((am & s) << ASHIFT) + ABASE; U.putOrderedObject(a, j, task);//任务加入队列中 U.putOrderedInt(q, QTOP, s + 1);//挪动下次任务存放的槽的位置 U.putIntVolatile(q, QLOCK, 0);//队列解锁 if (n <= 1)//当前数组元素少时,进行唤醒当前线程;或者当没有活动线程或线程数较少时,添加新的线程 signalWork(ws, q); return; } U.compareAndSwapInt(q, QLOCK, 1, 0);//队列解锁 } externalSubmit(task);//升级版的externalPush } volatile int runState; // lockable status锁定状态 // runState: SHUTDOWN为负数,其他的为2的次幂 private static final int RSLOCK = 1; private static final int RSIGNAL = 1 << 1;//唤醒 private static final int STARTED = 1 << 2;//启动 private static final int STOP = 1 << 29;//停止 private static final int TERMINATED = 1 << 30;//结束 private static final int SHUTDOWN = 1 << 31;//关闭
- externalSubmit:队列添加任务失败,进行升级版操作,即创建队列数组和创建队列后,将任务放入新创建的队列中;
private void externalSubmit(ForkJoinTask<?> task) { int r; // initialize caller's probe if ((r = ThreadLocalRandom.getProbe()) == 0) { ThreadLocalRandom.localInit(); r = ThreadLocalRandom.getProbe(); } for (;;) {//自旋 WorkQueue[] ws; WorkQueue q; int rs, m, k; boolean move = false; /** *ForkJoinPool执行器停止工作了,抛出异常 *ForkJoinPool extends AbstractExecutorService *abstract class AbstractExecutorService implements ExecutorService *interface ExecutorService extends Executor *interface Executor执行提交的对象Runnable任务 */ if ((rs = runState) < 0) { tryTerminate(false, false); // help terminate throw new RejectedExecutionException(); } //第一次遍历,队列数组未创建,进行创建 else if ((rs & STARTED) == 0 || // initialize初始化 ((ws = workQueues) == null || (m = ws.length - 1) < 0)) { int ns = 0; rs = lockRunState(); try { if ((rs & STARTED) == 0) { U.compareAndSwapObject(this, STEALCOUNTER, null, new AtomicLong()); // create workQueues array with size a power of two int p = config & SMASK; // ensure at least 2 slots,config是CPU核数 int n = (p > 1) ? p - 1 : 1; n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1; workQueues = new WorkQueue[n];//创建 ns = STARTED; } } finally { unlockRunState(rs, (rs & ~RSLOCK) | ns); } } //第三次遍历,把任务放入队列中 else if ((q = ws[k = r & m & SQMASK]) != null) { if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) { ForkJoinTask<?>[] a = q.array; int s = q.top; boolean submitted = false; // initial submission or resizing try { // locked version of push if ((a != null && a.length > s + 1 - q.base) || (a = q.growArray()) != null) { int j = (((a.length - 1) & s) << ASHIFT) + ABASE; U.putOrderedObject(a, j, task); U.putOrderedInt(q, QTOP, s + 1); submitted = true; } } finally { U.compareAndSwapInt(q, QLOCK, 1, 0); } if (submitted) { signalWork(ws, q); return; } } move = true; // move on failure } //第二次遍历,队列数组为空,创建队列 else if (((rs = runState) & RSLOCK) == 0) { // create new queue q = new WorkQueue(this, null); q.hint = r; q.config = k | SHARED_QUEUE; q.scanState = INACTIVE; rs = lockRunState(); // publish index if (rs > 0 && (ws = workQueues) != null && k < ws.length && ws[k] == null) ws[k] = q; // else terminated unlockRunState(rs, rs & ~RSLOCK); } else move = true; // move if busy if (move) r = ThreadLocalRandom.advanceProbe(r); } }
-
-
fork任务切分的提交:ForkJoinTask.fork() -> ForkJoinWorkerThread.workQueue.push(task)/ForkJoinPool.common.externalPush(task) -> ForkJoinPool.push(task)/externalPush(task)
- fork:
public final ForkJoinTask<V> fork() { Thread t; if ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)//当前线程是workerThread,任务直接放入workerThread当前的workQueue ((ForkJoinWorkerThread)t).workQueue.push(this); else ForkJoinPool.common.externalPush(this);//将任务添加到随机选取的队列中或新创建的队列中 return this; }
-
push:
public class ForkJoinPool extends AbstractExecutorService { static final class WorkQueue { final void push(ForkJoinTask<?> task) { ForkJoinTask<?>[] a; ForkJoinPool p; int b = base, s = top, n; if ((a = array) != null) { // ignore if queue removed,队列被移除忽略 int m = a.length - 1; // fenced write for task visibility U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);//任务加入队列中 U.putOrderedInt(this, QTOP, s + 1);//挪动下次任务存放的槽的位置 if ((n = s - b) <= 1) {//当前数组元素少时,进行唤醒当前线程;或者当没有活动线程或线程数较少时,添加新的线程 if ((p = pool) != null) p.signalWork(p.workQueues, this); } else if (n >= m)//数组所有元素都满了进行2倍扩容 growArray(); } } final ForkJoinTask<?>[] growArray() { ForkJoinTask<?>[] oldA = array; int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;//2倍扩容或初始化 if (size > MAXIMUM_QUEUE_CAPACITY) throw new RejectedExecutionException("Queue capacity exceeded"); int oldMask, t, b; ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size]; if (oldA != null && (oldMask = oldA.length - 1) >= 0 && (t = top) - (b = base) > 0) { int mask = size - 1; do { // emulate poll from old array, push to new array遍历从旧数组中取出放到新数组中 ForkJoinTask<?> x; int oldj = ((b & oldMask) << ASHIFT) + ABASE; int j = ((b & mask) << ASHIFT) + ABASE; x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);//从旧数组中取出 if (x != null && U.compareAndSwapObject(oldA, oldj, x, null))//将旧数组取出的位置的对象置为null U.putObjectVolatile(a, j, x);//放入新数组 } while (++b != t); } return a; } } }
- fork:
任务的消费
任务的消费的执行链路是ForkJoinTask.doExec() -> RecursiveTask.exec()/RecursiveAction.exec() -> 覆盖重写的compute()
-
doExec:任务的执行入口
final int doExec() { int s; boolean completed; if ((s = status) >= 0) { try { completed = exec();//消费任务 } catch (Throwable rex) { return setExceptionalCompletion(rex); } if (completed) s = setCompletion(NORMAL);//任务执行完设置状态为NORMAL,并唤醒其他等待任务 } return s; } protected abstract boolean exec(); private int setCompletion(int completion) { for (int s;;) { if ((s = status) < 0) return s; if (U.compareAndSwapInt(this, STATUS, s, s | completion)) {//任务状态修改为NORMAL if ((s >>> 16) != 0)//状态不是SMASK synchronized (this) { notifyAll(); }//唤醒其他等待任务 return completion; } } } /** The run status of this task 任务的运行状态*/ volatile int status; // accessed directly by pool and workers由ForkJoinPool池或ForkJoinWorkerThread控制 static final int DONE_MASK = 0xf0000000; // mask out non-completion bits static final int NORMAL = 0xf0000000; // must be negative static final int CANCELLED = 0xc0000000; // must be < NORMAL static final int EXCEPTIONAL = 0x80000000; // must be < CANCELLED static final int SIGNAL = 0x00010000; // must be >= 1 << 16 static final int SMASK = 0x0000ffff; // short bits for tags
任务真正执行处理逻辑
任务提交到ForkJoinPool,最终真正的是由继承Thread的ForkJoinWorkerThread的run方法来执行消费任务的,ForkJoinWorkerThread处理哪个任务是由join来出队的;
-
ForkJoinTask.join()
public final V join() { int s; if ((s = doJoin() & DONE_MASK) != NORMAL) reportException(s); return getRawResult();//得到返回结果 } private int doJoin() { int s; Thread t; ForkJoinWorkerThread wt; ForkJoinPool.WorkQueue w; /** * (s = status) < 0 判断任务是否已经完成,完成直接返回s * 任务未完成: * 1)线程是ForkJoinWorkerThread,tryUnpush任务出队然后消费任务doExec * 1.1)出队或消费失败,执行awaitJoin进行自旋,如果任务状态是完成就退出,否则继续尝试出队,直到任务完成或超时为止; * 2)如果线程不是ForkJoinWorkerThread,执行externalAwaitDone进行出队消费 */ return (s = status) < 0 ? s : ((t = Thread.currentThread()) instanceof ForkJoinWorkerThread) ? (w = (wt = (ForkJoinWorkerThread)t).workQueue). tryUnpush(this) && (s = doExec()) < 0 ? s : wt.pool.awaitJoin(w, this, 0L) : externalAwaitDone(); } private void reportException(int s) { if (s == CANCELLED)//取消 throw new CancellationException(); if (s == EXCEPTIONAL)//异常 rethrow(getThrowableException()); }
- awaitJoin:
public class ForkJoinPool{ final int awaitJoin(WorkQueue w, ForkJoinTask<?> task, long deadline) { int s = 0; if (task != null && w != null) { ForkJoinTask<?> prevJoin = w.currentJoin; U.putOrderedObject(w, QCURRENTJOIN, task); CountedCompleter<?> cc = (task instanceof CountedCompleter) ? (CountedCompleter<?>)task : null; for (;;) { if ((s = task.status) < 0)//任务完成退出 break; if (cc != null)//当前任务即将完成,检查是否还有其他的等待任务,如果有 //运行当前队列的其他任务,若当前的队列中没有任务了,则窃取其他队列的任务并运行 helpComplete(w, cc, 0); //当前队列没有任务了,或队列只剩下最后一个任务执行完了 else if (w.base == w.top || w.tryRemoveAndExec(task)) helpStealer(w, task);//窃取其他队列的任务 if ((s = task.status) < 0) break; long ms, ns; if (deadline == 0L) ms = 0L; else if ((ns = deadline - System.nanoTime()) <= 0L)//超时退出 break; else if ((ms = TimeUnit.NANOSECONDS.toMillis(ns)) <= 0L) ms = 1L; if (tryCompensate(w)) {//当前队列阻塞了 task.internalWait(ms);//进行等待 U.getAndAddLong(this, CTL, AC_UNIT); } } U.putOrderedObject(w, QCURRENTJOIN, prevJoin); } return s; } }
- externalAwaitDone:
private int externalAwaitDone() { /** * 当前任务是CountedCompleter * 1)是则执行ForkJoinPool.common.externalHelpComplete() * 2)否则执行ForkJoinPool.common.tryExternalUnpush(this)进行任务出队 * 2.1)出队成功,进行doExec()消费,否则进行阻塞等待 */ int s = ((this instanceof CountedCompleter) ? // try helping ForkJoinPool.common.externalHelpComplete( (CountedCompleter<?>)this, 0) : ForkJoinPool.common.tryExternalUnpush(this) ? doExec() : 0); if (s >= 0 && (s = status) >= 0) {//任务未完成 boolean interrupted = false; do { if (U.compareAndSwapInt(this, STATUS, s, s | SIGNAL)) {//任务状态标记为SIGNAL synchronized (this) { if (status >= 0) { try { wait(0L);//阻塞等待 } catch (InterruptedException ie) {//有中断异常 interrupted = true;//设置中断标识为true } } else notifyAll();//任务完成唤醒其他任务 } } } while ((s = status) >= 0); if (interrupted) Thread.currentThread().interrupt();//当前线程进行中断 } return s; } final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) { WorkQueue[] ws; int n; int r = ThreadLocalRandom.getProbe(); //没有任务直接结束,有任务则执行helpComplete //helpComplete:运行随机选取的队列的任务,若选取的队列中没有任务了,则窃取其他队列的任务并运行 return ((ws = workQueues) == null || (n = ws.length) == 0) ? 0 : helpComplete(ws[(n - 1) & r & SQMASK], task, maxTasks); }
-
run和工作窃取
任务是由workThread来窃取的,workThread是一个线程。线程的所有逻辑都是由run()方法执行:
public class ForkJoinWorkerThread extends Thread {
public void run() {
if (workQueue.array == null) { // only run once
Throwable exception = null;
try {
onStart();//初始化状态
pool.runWorker(workQueue);//处理任务队列
} catch (Throwable ex) {
exception = ex;
} finally {
try {
onTermination(exception);
} catch (Throwable ex) {
if (exception == null)
exception = ex;
} finally {
pool.deregisterWorker(this, exception);
}
}
}
}
}
public class ForkJoinPool{
final void runWorker(WorkQueue w) {
w.growArray(); // allocate queue,队列初始化
int seed = w.hint; // initially holds randomization hint
int r = (seed == 0) ? 1 : seed; // avoid 0 for xorShift
for (ForkJoinTask<?> t;;) {//自旋
if ((t = scan(w, r)) != null)//从队列中窃取任务成功,scan()进行任务窃取
w.runTask(t);//执行任务,内部方法调用了doExec()进行任务的消费
else if (!awaitWork(w, r))//队列没有任务了则结束
break;
r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
}
}
}
-
- scan:
private ForkJoinTask<?> scan(WorkQueue w, int r) { WorkQueue[] ws; int m; if ((ws = workQueues) != null && (m = ws.length - 1) > 0 && w != null) { int ss = w.scanState; // initially non-negative for (int origin = r & m, k = origin, oldSum = 0, checkSum = 0;;) { WorkQueue q; ForkJoinTask<?>[] a; ForkJoinTask<?> t; int b, n; long c; if ((q = ws[k]) != null) { //随机选中了非空队列 q if ((n = (b = q.base) - q.top) < 0 && (a = q.array) != null) { // non-empty long i = (((a.length - 1) & b) << ASHIFT) + ABASE; //从尾部出队,b是尾部下标 if ((t = ((ForkJoinTask<?>) U.getObjectVolatile(a, i))) != null && q.base == b) { if (ss >= 0) { if (U.compareAndSwapObject(a, i, t, null)) { //利用cas出队 q.base = b + 1; if (n < -1) // signal others signalWork(ws, q); return t; //出队成功,成功窃取一个任务! } } else if (oldSum == 0 && // try to activate 队列没有激活,尝试激活 w.scanState < 0) tryRelease(c = ctl, ws[m & (int)c], AC_UNIT); } if (ss < 0) // refresh ss = w.scanState; r ^= r << 1; r ^= r >>> 3; r ^= r << 10; origin = k = r & m; // move and rescan oldSum = checkSum = 0; continue; } checkSum += b; }<br data-filtered="filtered"> //k = k + 1表示取下一个队列 如果(k + 1) & m == origin表示 已经遍历完所有队列了 if ((k = (k + 1) & m) == origin) { // continue until stable if ((ss >= 0 || (ss == (ss = w.scanState))) && oldSum == (oldSum = checkSum)) { if (ss < 0 || w.qlock < 0) // already inactive break; int ns = ss | INACTIVE; // try to inactivate long nc = ((SP_MASK & ns) | (UC_MASK & ((c = ctl) - AC_UNIT))); w.stackPred = (int)c; // hold prev stack top U.putInt(w, QSCANSTATE, ns); if (U.compareAndSwapLong(this, CTL, c, nc)) ss = ns; else w.scanState = ss; // back out } checkSum = 0; } } } return null; }
- ForkJoinPool.runTask:
final void runTask(ForkJoinTask<?> task) { if (task != null) { scanState &= ~SCANNING; // mark as busy (currentSteal = task).doExec(); U.putOrderedObject(this, QCURRENTSTEAL, null); // release for GC execLocalTasks(); ForkJoinWorkerThread thread = owner; if (++nsteals < 0) // collect on overflow transferStealCount(pool); scanState |= SCANNING; if (thread != null) thread.afterTopLevelExec(); } }
- scan:
四.总结
对于fork/join来说,在使用时还是存在下面的一些问题的:
- 在使用JVM的时候我们要考虑OOM的问题,如果我们的任务处理时间非常耗时,并且处理的数据非常大的时候,会造成OOM;
- ForkJoin是通过多线程的方式进行处理任务,那么我们不得不考虑是否应该使用ForkJoin。因为当数据量不是特别大的时候,我们没有必要使用ForkJoin。因为多线程会涉及到上下文的切换,所以数据量不大的时候使用串行比使用多线程快;
- 项目中进行本地测试发现,业务层Service进行excel表数据(数据量几百)的复杂处理,进行单线程for循环统计消耗时间,然后与使用fork/join进行处理统计消耗时间,发现fork/join的消耗时间是单线程for的2倍;
来源:oschina
链接:https://my.oschina.net/u/4394438/blog/4275645