GATK4.1 call SNP

萝らか妹 提交于 2020-08-08 13:26:35

 GATK4.0 和之前的版本相比还是有较大的不同,更加趋于流程化。

软件安装

1 wget https://github.com/broadinstitute/gatk/releases/download/4.1.5.0/gatk-4.1.5.0.zip
2 unzip gatk-4.1.5.0.zip

 

 GATK 简单说明

1 ## 帮助信息
2 gat --help
3 
4 ## 列出所有的工具
5 gatk --list
6 
7 ## 工具的说明,比如以VariantAnnotator 为例
8 gatk VariantAnnotator --help

 

 

 GATK分析简要流程

  • 所需数据 : ref.fa

      •   reads1.fq
      •   reads2.fq
  • 建立索引

1 bwa index ref.fa
2 samtools  faidx ref.fa
3 gatk CreateSequenceDictionary -R ref.fa -O ref.dict
4 
5 ##
6 -R Input reference fasta or fasta.gz  Required
7 -O  输出文件

 

 

  • 比对

1 ## bwa 比对
2 bwa mem -t 4 -R '@RG\tID:id1\tPL:illumina\tSM:test' ref.fa test_1.fq test_2.fq | samtools view -bS - >test.bam
3 
4 ##参数
5 -R 设置reads group,gatk必须要的信息,其中ID,PL和SM信息是必须要的
6 
7 ## 排序
8 samtools sort -@ 3 -o test.sorted.bam test.bam
9 rm test.bam

 

GATK 要求read group的格式

ID = Read group identifier

  每一个read group 独有的ID,每一对reads 均有一个独特的ID,可以自定义命名;

PL = Platform

  测序平台;ILLUMINA, SOLID, LS454, HELICOS and PACBIO,不区分大小写;

SM = sample

  reads属于的样品名;SM要设定正确,因为GATK产生的VCF文件也使用这个名字;

LB = DNA preparation library identifier

  对一个read group的reads进行重复序列标记时,需要使用LB来区分reads来自那条lane;有时候,同一个库可能在不同的lane上完成测序;为了加以区分,

  同一个或不同库只要是在不同的lane产生的reads都要单独给一个ID. 一般无特殊说明,成对儿read属于同一库,可自定义,比如:library1

若是忘记添加read group信息还以通过 AddOrReplaceReadGroups 添加

 

1 gatk AddOrReplaceReadGroups -I .bam -O .add.bam -LB library1 -PL illumina -PU pl1 -SM name
2 
3 ##参数
4 -I Input file (BAM or SAM or a GA4GH url);
5 -O  Output file (BAM or SAM);
6 -LB Read-Group library;
7 -PL  Read-Group platform (e.g. ILLUMINA, SOLID);
8 -PU Read-Group platform unit (eg. run barcode);
9 -SM Read-Group sample name

 

 

  • 标记重复序列 

2 gatk  MarkDuplicates -I test.sorted.bam -O test.sorted.markdup.bam -M test.sorted.markdup_metrics.txt
3 ##参数
4 -I 排序后的一个或者多个bam或者sam文件
5 -M 输出重复矩阵
6 -O 输出文件
7 
8 ## 建立索引
9 samtools index test.sorted.markup.bam

 

 

  • 检测变异

 1 ##两种方法
 2 
 3 ##(1)多样本一起call,此次只有一个样本,若有多个样本,则继续用 -I 参数添加即可
 4 gatk --java-options -Xmx4G HaplotypeCaller -I test.sorted.markup.bam -O test.gvcf1 -R ref.fa
 5 
 6 ## (2)单个样本call,然后在合并
 7 ## 生成中间文件gvcf
 8 gatk --java-options -Xmx4G HaplotypeCaller -I test.sorted.markup.bam -O test.gvcf -R ref.fa --emit-ref-confidence GVCF
 9 
10 ##通过gvcf检测变异, -V 添加上步得到的gvcf
11 gatk GenotypeGVCFs -R ref.fa -V test.gvcf -O test.vcf
13 
14 ##参数
15 -I BAM/SAM/CRAM file
16 -O  输出文件
17 -R 参考基因组
18 --java-options: 若设置java则需要添加
19 -Xmx4G:内存为4G,防止内存太大
20 -V  A VCF file containing variants

 

 

  • 提取SNP,INDEL

 1 ## 提取SNP
 2 gatk SelectVariants -V test.vcf -O test.snp.vcf --select-type-to-include SNP
 3 
 4 ## 提取INDEL
 5 gatk SelectVariants -V test.vcf -O test.indel.vcf --select-type-to-include INDEL
 6 
 7 ##参数
 8 -O 输出vcf文件
 9 -V 输入vcf文件
10 --select-type-to-include 选择提取的变异类型{NO_VARIATION, SNP, MNP, INDEL,
11                               SYMBOLIC, MIXED}

 

 

  •  对vcf文件进行过滤

 

 1 gatk VariantFiltration -O test.snp.fil.vcf.temp -V test.snp.vcf --filter-expression 'QUAL < 30.0 || QD < 2.0 || FS > 60.0 ||  SOR > 4.0' \
 2     --filter-name lowQualFilter --cluster-window-size 10  --cluster-size 3 --missing-values-evaluate-as-failing
 3  
 4 ## 参数
 5 -O 输出filt.vcf文件
 6 -V 输入vcf文件
 7 --filter-expression 过滤条件, VCF INFO 信息
 8 --cluster-window-size 以10个碱基为一个窗口
 9 --cluster-size 10个碱基为窗口,若存在3以上个则过滤
10 --filter-name 被过滤掉的SNP不会删除,而是给一个标签, 比如 Filter
11 --missing-values-evaluate-as-failing 当筛选标准比较多的时候,可能有一些位点没有筛选条件当中的一条或几条,例如下面的这个表达式;QUAL < 30.0 || QD < 2.0 || FS > 60.0 || MQ < 40.0 || HaplotypeScore > 13.0 并不一定所有位点都有这些信息,这种情况下GATK运行的时候会报很多WARNING信息,用这个参数可以把这些缺少某些FLAG的位点也给标记成没有通过筛选的。

 

  •  筛选PASS的SNP,INDEL

1 ## 根据FILTER那列信息进行筛选
2 grep PASS test.snp.fil.vcf.temp >  test.snp.fil.vcf

 

 

  

GATK4.0全基因组数据分析实战

GATK - Read groups

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!