Using SGD without using sklearn (LogLoss increasing with every epoch)

荒凉一梦 提交于 2020-08-08 05:16:08

问题


def train(X_train,y_train,X_test,y_test,epochs,alpha,eta0):
    w,b = initialize_weights(X_train[0])
    loss_test=[]
    N=len(X_train)
    for i in range(0,epochs):
        print(i)
        for j in range(N-1):
            grad_dw=gradient_dw(X_train[j],y_train[j],w,b,alpha,N)
            grad_db=gradient_db(X_train[j],y_train[j],w,b)
            w=np.array(w)+(alpha*(np.array(grad_dw)))
            b=b+(alpha*(grad_db))                
               predict2 = []
    for m in range(len(y_test)):
        z=np.dot(w[0],X_test[m])+b
        if sigmoid(z) == 0: # sigmoid(w,x,b) returns 1/(1+exp(-(dot(x,w)+b)))
            predict2.append(0.000001)
        elif sigmoid(z) == 1:
            predict2.append(0.99999)
        else:
            predict2.append(sigmoid(z)) 
            
    loss_test.append(logloss(y_test,predict2))       
    return w,b,loss_test

my gradient dw function

def gradient_dw(x,y,w,b,alpha,N):
    dw=[]
    for i in range(len(x)):
        dw.append((x[i]*(y-1/(1+np.exp(abs(w.T[0][i]*x[i]+b)))))+(alpha/N)*(w.T[0][i]))
    return dw

My gradient db function:

 def gradient_db(x,y,w,b):
        db=0
        for i in range(len(x)):
            db=(y-1/(1+np.exp(abs(w.T[0][i]*x[i]+b))))
        return db

My loss function:

def logloss(y_true,y_pred):
    loss=0
    for i in range(len(y_true)):
        loss+=((y_true[i]*math.log10(y_pred[i]))+((1-y_true[i])*math.log10(1-y_pred[i])))
    loss=-1*(1/len(y_true))*loss
    return loss

My problem is after every epoch my loss is increasing. Why?

Any Help will be appreciated

Thank you


回答1:


  1. The problem was of weight function

  2. i was taking weight array as of dim(15,1)

  3. but it should be (15)

  4. So all the changes need to be done according with it in this code

  5. Thank You



来源:https://stackoverflow.com/questions/63009169/using-sgd-without-using-sklearn-logloss-increasing-with-every-epoch

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!