离线数据仓库
数据仓库(Data WareHouse)是为企业所有决策制定过程,提供所有系统数据支持的战略集合
通过对数据仓库中数据的分析,可以帮助企业,改进业务流程、控制、成本、提高产品质量等
数据仓库,并不是数据最终目的地,而是为数据最终的目的地做好准备:清洗、转义、分类、重组、合并、拆分、统计等等
1 项目简介
1.1 项目需求
- 用户行为数据采集平台搭建
- 业务数据采集平台搭建
- 数据仓库维度建模
- 分析:用户、流量、会员、商品、销售、地区、活动等主题
- 采用即席查询工具,随时进行指标分析
- 对集群性能进行监控,发生异常需要报警
- 元数据管理
- 质量监控
1.2 技术选型
- 数据采集功能如何技术选型
采集框架名称 | 主要功能 |
---|---|
Sqoop | 大数据平台和关系型数据库的导入导出 |
Datax | 大数据平台和关系型数据库的导入导出 |
flume | 擅长日志数据的采集和解析 |
logstash | 擅长日志数据的采集和解析 |
maxwell | 常用作实时解析mysql的binlog数据 |
canal | 常用作实时解析mysql的binlog数据 |
waterDrop | 数据导入导出工具 |
- 消息中间件的技术选型
开源MQ | 概述 |
---|---|
RabbitMQ | LShift 用Erlang实现,支持多协议,broker架构,重量级 |
ZeroMQ | AMQP最初设计者iMatix公司实现,轻量消息内核,无broker设计。C++实现 |
Kafka | LinkedIn用Scala语言实现,支持hadoop数据并行加载 |
ActiveMQ | Apach的一种JMS具体实现,支持代理和p2p部署。支持多协议。Java实现 |
Redis | Key-value NoSQL数据库,有MQ的功能 |
MemcacheQ | 国人利用memcache缓冲队列协议开发的消息队列,C/C++实现 |
- 数据永久存储技术框架选型
框架名称 | 主要用途 |
---|---|
HDFS | 分布式文件存储系统 |
Hbase | Key,value对的nosql数据库 |
Kudu | Cloudera公司开源提供的类似于Hbase的数据存储 |
Hive | 基于MR的数据仓库工具 |
- 数据离线计算框架技术选型(hive引擎)
框架名称 | 基本介绍 |
---|---|
MapReduce | 最早期的分布式文件计算系统 |
Spark | 基于spark,一站式解决批流处理问题 |
Flink | 基于flink,一站式解决批流处理问题 |
- 分析数据库选型
对比项目 | Druid | Kylin | Presto | Impala | ES |
---|---|---|---|---|---|
亚秒级响应 | √ | √ | × | × | × |
百亿数据集 | √ | √ | √ | √ | √ |
SQL支持 | √ | √ | √ | √ | √(需插件) |
离线 | √ | √ | √ | √ | √ |
实时 | √ | √ | × | × | × |
精确去重 | × | √ | √ | √ | × |
多表Join | × | √ | √ | √ | × |
JDBC for BI | × | √ | √ | √ | × |
- 其他选型
- 任务调度:DolphinScheduler
- 集群监控:CM+CDH
- 元数据管理:Atlas
- BI工具:Zeppelin、Superset
1.3 架构
1.4 集群资源规划
- 如何确认集群规模(假设每台服务器8T磁盘,128G内存)
- 每天日活跃用户100万,每人一天平均100条:100万 * 100条 = 1亿条
- 每条日志1K左右,每天1一条:1亿 / 1024 /1024 = 约100G
- 半年内不扩容服务器来算:100G * 180天 = 约18T
- 保存3个副本:18T * 3 = 54T
- 预留20% ~ 30%BUF:54T / 0.7 = 77T
- 总结:约10台服务器
由于资源有限,采用3台进行制作
服务名称 | 子服务 | 服务器 cdh01.cm | 服务器 cdh02.cm | 服务器 cdh03.cm |
---|---|---|---|---|
HDFS | NameNode DataNode SecondaryNameNode |
√ √ |
√ |
√ √ |
Yarn | NodeManager Resourcemanager |
√ |
√ √ |
√ |
Zookeeper | Zookeeper Server | √ | √ | √ |
Flume | Flume Flume(消费 Kafka) |
√ |
√ |
√ |
Kafka | Kafka | √ | √ | √ |
Hive | Hive | √ | ||
MySQL | MySQL | √ | ||
Sqoop | Sqoop | √ | ||
Presto | Coordinator Worker |
√ |
√ |
√ |
DolphinScheduler | DolphinScheduler | √ | ||
Druid | Druid | √ | √ | √ |
Kylin | Kylin | √ | ||
Hbase | HMaster HRegionServer |
√ √ |
√ |
√ |
Superset | Superset | √ | ||
Atlas | Atlas | √ | ||
Solr | Solr | √ |
2 数据生成模块
此模块主要针对于用户行为数据的采集,为什么要进行用户行为数据的采集呢?
因为对于企业来说,用户就是钱,需要将用户的习惯等数据进行采集,以便在大数据衍生产品如用户画像标签系统进行分析,那么一般情况下用户的信息都是离线分析的,后期我们可以将分析结果存入ES等倒排索引生态中,在使用实时计算的方式匹配用户习惯,进行定制化推荐,更进一步的深度学习,对相似用户进行推荐。
2.1 埋点数据基本格式
-
公共字段:基本所有安卓手机都包含的字段
-
业务字段:埋点上报的字段,有具体的业务类型
{
"ap":"xxxxx",//项目数据来源 app pc
"cm": { //公共字段
"mid": "", // (String) 设备唯一标识
"uid": "", // (String) 用户标识
"vc": "1", // (String) versionCode,程序版本号
"vn": "1.0", // (String) versionName,程序版本名
"l": "zh", // (String) language 系统语言
"sr": "", // (String) 渠道号,应用从哪个渠道来的。
"os": "7.1.1", // (String) Android 系统版本
"ar": "CN", // (String) area 区域
"md": "BBB100-1", // (String) model 手机型号
"ba": "blackberry", // (String) brand 手机品牌
"sv": "V2.2.1", // (String) sdkVersion
"g": "", // (String) gmail
"hw": "1620x1080", // (String) heightXwidth,屏幕宽高
"t": "1506047606608", // (String) 客户端日志产生时的时间
"nw": "WIFI", // (String) 网络模式
"ln": 0, // (double) lng 经度
"la": 0 // (double) lat 纬度
},
"et": [ //事件
{
"ett": "1506047605364", //客户端事件产生时间
"en": "display", //事件名称
"kv": { //事件结果,以 key-value 形式自行定义
"goodsid": "236",
"action": "1",
"extend1": "1",
"place": "2",
"category": "75"
}
}
]
}
- 示例日志(服务器时间戳 | 日志),时间戳可以有效判定网络服务的通信时长:
1540934156385| {
"ap": "gmall", //数仓库名
"cm": {
"uid": "1234",
"vc": "2",
"vn": "1.0",
"la": "EN",
"sr": "",
"os": "7.1.1",
"ar": "CN",
"md": "BBB100-1",
"ba": "blackberry",
"sv": "V2.2.1",
"g": "abc@gmail.com",
"hw": "1620x1080",
"t": "1506047606608",
"nw": "WIFI",
"ln": 0,
"la": 0
},
"et": [
{
"ett": "1506047605364", //客户端事件产生时间
"en": "display", //事件名称
"kv": { //事件结果,以 key-value 形式自行定义
"goodsid": "236",
"action": "1",
"extend1": "1",
"place": "2",
"category": "75"
}
},{
"ett": "1552352626835",
"en": "active_background",
"kv": {
"active_source": "1"
}
}
]
}
}
2.2 埋点事件日志数据
2.2.1 商品列表页
- 事件名称:loading
标签 | 含义 |
---|---|
action | 动作:开始加载=1,加载成功=2,加载失败=3 |
loading_time | 加载时长:计算下拉开始到接口返回数据的时间,(开始加载报 0,加载成 功或加载失败才上报时间) |
loading_way | 加载类型:1-读取缓存,2-从接口拉新数据 (加载成功才上报加载类型) |
extend1 | 扩展字段 Extend1 |
extend2 | 扩展字段 Extend2 |
type | 加载类型:自动加载=1,用户下拽加载=2,底部加载=3(底部条触发点击底部提示条/点击返回顶部加载) |
type1 | 加载失败码:把加载失败状态码报回来(报空为加载成功,没有失败) |
2.2.2 商品点击
- 事件标签:display
标签 | 含义 |
---|---|
action | 动作:曝光商品=1,点击商品=2 |
goodsid | 商品 ID(服务端下发的 ID) |
place | 顺序(第几条商品,第一条为 0,第二条为 1,如此类推) |
extend1 | 曝光类型:1 - 首次曝光 2-重复曝光 |
category | 分类 ID(服务端定义的分类 ID) |
2.2.3 商品详情页
- 事件标签:newsdetail
标签 | 含义 |
---|---|
entry | 页面入口来源:应用首页=1、push=2、详情页相关推荐=3 |
action | 动作:开始加载=1,加载成功=2(pv),加载失败=3, 退出页面=4 |
goodsid | 商品 ID(服务端下发的 ID) |
show_style | 商品样式:0、无图、1、一张大图、2、两张图、3、三张小图、4、一张小图、 5、一张大图两张小图 |
news_staytime | 页面停留时长:从商品开始加载时开始计算,到用户关闭页面所用的时间。 若中途用跳转到其它页面了,则暂停计时,待回到详情页时恢复计时。或中 途划出的时间超过 10 分钟,则本次计时作废,不上报本次数据。如未加载成 功退出,则报空。 |
loading_time | 加载时长:计算页面开始加载到接口返回数据的时间 (开始加载报 0,加载 成功或加载失败才上报时间) |
type1 | 加载失败码:把加载失败状态码报回来(报空为加载成功,没有失败) |
category | 分类 ID(服务端定义的分类 ID) |
2.2.4 广告
- 事件名称:ad
标签 | 含义 |
---|---|
entry | 入口:商品列表页=1 应用首页=2 商品详情页=3 |
action | 动作: 广告展示=1 广告点击=2 |
contentType | Type: 1 商品 2 营销活动 |
displayMills | 展示时长 毫秒数 |
itemId | 商品 id |
activityId | 营销活动 id |
2.2.5 消息通知
- 事件标签:notification
标签 | 含义 |
---|---|
action | 动作:通知产生=1,通知弹出=2,通知点击=3,常驻通知展示(不重复上 报,一天之内只报一次)=4 |
type | 通知 id:预警通知=1,天气预报(早=2,晚=3),常驻=4 |
ap_time | 客户端弹出时间 |
content | 备用字段 |
2.2.6 用户后台活跃
- 事件标签: active_background
标签 | 含义 |
---|---|
active_source | 1=upgrade,2=download(下载),3=plugin_upgrade |
2.2.7 评论
- 描述:评论表(comment)
序号 | 字段名称 | 字段描述 | 字段类型 | 长度 | 允许空 | 缺省值 |
---|---|---|---|---|---|---|
1 | comment_id | 评论表 | int | 10,0 | ||
2 | userid | 用户 id | int | 10,0 | √ | 0 |
3 | p_comment_id | 父级评论 id(为 0 则是 一级评论,不 为 0 则是回复) |
int | 10,0 | √ | |
4 | content | 评论内容 | string | 1000 | √ | |
5 | addtime | 创建时间 | string | √ | ||
6 | other_id | 评论的相关 id | int | 10,0 | √ | |
7 | praise_count | 点赞数量 | int | 10,0 | √ | 0 |
8 | reply_count | 回复数量 | int | 10,0 | √ | 0 |
2.2.8 收藏
- 描述:收藏(favorites)
序号 | 字段名称 | 字段描述 | 字段类型 | 长度 | 允许空 | 缺省值 |
---|---|---|---|---|---|---|
1 | id | 主键 | int | 10,0 | ||
2 | course_id | 商品 id | int | 10,0 | √ | 0 |
3 | userid | 用户 ID | int | 10,0 | √ | 0 |
4 | add_time | 创建时间 | string | √ |
2.2.9 点赞
- 描述:所有的点赞表(praise)
序号 | 字段名称 | 字段描述 | 字段类型 | 长度 | 允许空 | 缺省值 |
---|---|---|---|---|---|---|
1 | id | 主键 id | int | 10,0 | ||
2 | userid | 用户 id | int | 10,0 | √ | |
3 | target_id | 点赞的对象 id | int | 10,0 | √ | |
4 | type | 创建点赞类型:1问答点赞 2问答评论点赞 3文章点赞数 4评论点赞 |
int | 10,0 | √ | |
5 | add_time | 添加时间 | string | √ |
2.2.10 错误日志
errorBrief | 错误摘要 |
---|---|
errorBrief | 错误详情 |
2.3 埋点启动日志数据
{
"action":"1",
"ar":"MX",
"ba":"HTC",
"detail":"",
"en":"start",
"entry":"2",
"extend1":"",
"g":"43R2SEQX@gmail.com",
"hw":"640*960",
"l":"en",
"la":"20.4",
"ln":"-99.3",
"loading_time":"2",
"md":"HTC-2",
"mid":"995",
"nw":"4G",
"open_ad_type":"2",
"os":"8.1.2",
"sr":"B",
"sv":"V2.0.6",
"t":"1561472502444",
"uid":"995",
"vc":"10",
"vn":"1.3.4"
}
- 事件标签: start
标签 | 含义 |
---|---|
entry | 入 口 : push=1 , widget=2 , icon=3 , notification=4, lockscreen_widget =5 |
open_ad_type | 开屏广告类型: 开屏原生广告=1, 开屏插屏广告=2 |
action | 状态:成功=1 失败=2 |
loading_time | 加载时长:计算下拉开始到接口返回数据的时间,(开始加载报 0,加载成 功或加载失败才上报时间) |
detail | 失败码(没有则上报空) |
extend1 | 失败的 message(没有则上报空) |
en | 日志类型 start |
2.4 数据生成脚本
如下案例中将省略图中红框中的日志生成过程,直接使用Java程序构建logFile文件。
2.4.1 数据生成格式
- 启动日志
{"action":"1","ar":"MX","ba":"Sumsung","detail":"201","en":"start","entry":"4","extend1":"","g":"69021X1Q@gmail.com","hw":"1080*1920","l":"pt","la":"-11.0","ln":"-70.0","loading_time":"9","md":"sumsung-5","mid":"244","nw":"3G","open_ad_type":"1","os":"8.2.3","sr":"D","sv":"V2.1.3","t":"1589612165914","uid":"244","vc":"16","vn":"1.2.1"}
- 事件日志(由于转换问题,图中没有 "时间戳|")
1589695383284|{"cm":{"ln":"-79.4","sv":"V2.5.3","os":"8.0.6","g":"81614U54@gmail.com","mid":"245","nw":"WIFI","l":"pt","vc":"6","hw":"1080*1920","ar":"MX","uid":"245","t":"1589627025851","la":"-39.6","md":"HTC-7","vn":"1.3.5","ba":"HTC","sr":"N"},"ap":"app","et":[{"ett":"1589650631883","en":"display","kv":{"goodsid":"53","action":"2","extend1":"2","place":"3","category":"50"}},{"ett":"1589690866312","en":"newsdetail","kv":{"entry":"3","goodsid":"54","news_staytime":"1","loading_time":"6","action":"4","showtype":"0","category":"78","type1":""}},{"ett":"1589641734037","en":"loading","kv":{"extend2":"","loading_time":"0","action":"1","extend1":"","type":"2","type1":"201","loading_way":"2"}},{"ett":"1589687684878","en":"ad","kv":{"activityId":"1","displayMills":"92030","entry":"3","action":"5","contentType":"0"}},{"ett":"1589632980772","en":"active_background","kv":{"active_source":"1"}},{"ett":"1589682030324","en":"error","kv":{"errorDetail":"java.lang.NullPointerException\n at cn.lift.appIn.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)\n at cn.lift.dfdf.web.AbstractBaseController.validInbound","errorBrief":"at cn.lift.dfdf.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)"}},{"ett":"1589675065650","en":"comment","kv":{"p_comment_id":2,"addtime":"1589624299628","praise_count":509,"other_id":6,"comment_id":7,"reply_count":35,"userid":3,"content":"关色芦候佰间纶珊斑禁尹赞涤仇彭企呵姜毅"}},{"ett":"1589631359459","en":"favorites","kv":{"course_id":7,"id":0,"add_time":"1589681240066","userid":7}},{"ett":"1589616574187","en":"praise","kv":{"target_id":1,"id":7,"type":3,"add_time":"1589642497314","userid":8}}]}
2.4.2 创建maven工程
- data-producer:pom.xml
<!--版本号统一-->
<properties>
<slf4j.version>1.7.20</slf4j.version>
<logback.version>1.0.7</logback.version>
</properties>
<dependencies> <!--阿里巴巴开源 json 解析框架-->
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.51</version>
</dependency> <!--日志生成框架-->
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-core</artifactId>
<version>${logback.version}</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>${logback.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.10</version>
<scope>provided</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assembly-plugin</artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jar-with-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<!--主类名-->
<mainClass>com.heaton.bigdata.datawarehouse.app.App</mainClass>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>make-assembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
- data-producer:logback.xml
<?xml version="1.0" encoding="UTF-8"?>
<configuration debug="false"> <!--定义日志文件的存储地址 勿在 LogBack 的配置中使用相对路径 -->
<property name="LOG_HOME" value="/root/logs/"/> <!-- 控制台输出 -->
<appender name="STDOUT" class="ch.qos.logback.core.ConsoleAppender">
<encoder
class="ch.qos.logback.classic.encoder.PatternLayoutEncoder"> <!--格式化输出:%d 表示日期,%thread 表示线程名,%-5level:级别从左显示 5 个字符宽度%msg: 日志消息,%n 是换行符 -->
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%thread] %-5level %logger{50} - %msg%n</pattern>
</encoder>
</appender> <!-- 按照每天生成日志文件。存储事件日志 -->
<appender name="FILE"
class="ch.qos.logback.core.rolling.RollingFileAppender"> <!-- <File>${LOG_HOME}/app.log</File>设置日志不超过${log.max.size}时的保存路径,注意, 如果是 web 项目会保存到 Tomcat 的 bin 目录 下 -->
<rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy"> <!--日志文件输出的文件名 -->
<FileNamePattern>${LOG_HOME}/app-%d{yyyy-MM-dd}.log</FileNamePattern> <!--日志文件保留天数 -->
<MaxHistory>30</MaxHistory>
</rollingPolicy>
<encoder class="ch.qos.logback.classic.encoder.PatternLayoutEncoder">
<pattern>%msg%n</pattern>
</encoder> <!--日志文件最大的大小 -->
<triggeringPolicy class="ch.qos.logback.core.rolling.SizeBasedTriggeringPolicy">
<MaxFileSize>10MB</MaxFileSize>
</triggeringPolicy>
</appender> <!--异步打印日志-->
<appender name="ASYNC_FILE"
class="ch.qos.logback.classic.AsyncAppender"> <!-- 不丢失日志.默认的,如果队列的 80%已满,则会丢弃 TRACT、DEBUG、INFO 级别的日志 -->
<discardingThreshold>0</discardingThreshold> <!-- 更改默认的队列的深度,该值会影响性能.默认值为 256 -->
<queueSize>512</queueSize> <!-- 添加附加的 appender,最多只能添加一个 -->
<appender-ref ref="FILE"/>
</appender> <!-- 日志输出级别 -->
<root level="INFO">
<appender-ref ref="STDOUT"/>
<appender-ref ref="ASYNC_FILE"/>
<appender-ref ref="error"/>
</root>
</configuration>
- data-flume:pom.xml
<dependencies>
<dependency>
<groupId>org.apache.flume</groupId>
<artifactId>flume-ng-core</artifactId>
<version>1.9.0</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
- hive-function:pom.xml
<dependencies>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>2.1.1</version>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<artifactId>maven-compiler-plugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
</plugins>
</build>
2.4.3 各事件bean
data-producer工程
2.4.3.1 公共日志类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 公共日志类
*/
@Data
public class AppBase {
private String mid; // (String) 设备唯一
private String uid; // (String) 用户 uid
private String vc; // (String) versionCode,程序版本号
private String vn; // (String) versionName,程序版本名
private String l; // (String) 系统语言
private String sr; // (String) 渠道号,应用从哪个渠道来的。
private String os; // (String) Android 系统版本
private String ar; // (String) 区域
private String md; // (String) 手机型号
private String ba; // (String) 手机品牌
private String sv; // (String) sdkVersion
private String g; // (String) gmail
private String hw; // (String) heightXwidth,屏幕宽高
private String t; // (String) 客户端日志产生时的时间
private String nw; // (String) 网络模式
private String ln; // (double) lng 经度
private String la; // (double) lat 纬度
}
2.4.3.2 启动日志类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 启动日志类
*/
@Data
public class AppStart extends AppBase {
private String entry;//入口: push=1,widget=2,icon=3,notification=4, lockscreen_widget
private String open_ad_type;//开屏广告类型: 开屏原生广告=1, 开屏插屏广告=2
private String action;//状态:成功=1 失败=2
private String loading_time;//加载时长:计算下拉开始到接口返回数据的时间,(开始加载报 0,加载成功或加载失败才上报时间)
private String detail;//失败码(没有则上报空)
private String extend1;//失败的 message(没有则上报空)
private String en;//启动日志类型标记
}
2.4.3.3 错误日志类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 错误日志类
*/
@Data
public class AppErrorLog {
private String errorBrief; //错误摘要
private String errorDetail; //错误详情
}
2.4.3.4 商品点击日志类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 商品点击日志类
*/
@Data
public class AppDisplay {
private String action;//动作:曝光商品=1,点击商品=2
private String goodsid;//商品 ID(服务端下发的 ID)
private String place;//顺序(第几条商品,第一条为 0,第二条为 1,如此类推)
private String extend1;//曝光类型:1 - 首次曝光 2-重复曝光(没有使用)
private String category;//分类 ID(服务端定义的分类 ID)
}
2.4.3.5 商品详情类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 商品详情类
*/
@Data
public class AppNewsDetail {
private String entry;//页面入口来源:应用首页=1、push=2、详情页相关推荐
private String action;//动作:开始加载=1,加载成功=2(pv),加载失败=3, 退出页面=4
private String goodsid;//商品 ID(服务端下发的 ID)
private String showtype;//商品样式:0、无图 1、一张大图 2、两张图 3、三张小图 4、一张小 图 5、一张大图两张小图 来源于详情页相关推荐的商品,上报样式都为 0(因为都是左文右图)
private String news_staytime;//页面停留时长:从商品开始加载时开始计算,到用户关闭页面 所用的时间。若中途用跳转到其它页面了,则暂停计时,待回到详情页时恢复计时。或中途划出的时间超 过 10 分钟,则本次计时作废,不上报本次数据。如未加载成功退出,则报空。
private String loading_time;//加载时长:计算页面开始加载到接口返回数据的时间 (开始加 载报 0,加载成功或加载失败才上报时间)
private String type1;//加载失败码:把加载失败状态码报回来(报空为加载成功,没有失败)
private String category;//分类 ID(服务端定义的分类 ID)
}
2.4.3.6 商品列表类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 商品列表类
*/
@Data
public class AppLoading {
private String action;//动作:开始加载=1,加载成功=2,加载失败
private String loading_time;//加载时长:计算下拉开始到接口返回数据的时间,(开始加载报 0, 加载成功或加载失败才上报时间)
private String loading_way;//加载类型:1-读取缓存,2-从接口拉新数据 (加载成功才上报加 载类型)
private String extend1;//扩展字段 Extend1
private String extend2;//扩展字段 Extend2
private String type;//加载类型:自动加载=1,用户下拽加载=2,底部加载=3(底部条触发点击底 部提示条/点击返回顶部加载)
private String type1;//加载失败码:把加载失败状态码报回来(报空为加载成功,没有失败)
}
2.4.3.7 广告类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 广告类
*/
@Data
public class AppAd {
private String entry;//入口:商品列表页=1 应用首页=2 商品详情页=3
private String action;//动作: 广告展示=1 广告点击=2
private String contentType;//Type: 1 商品 2 营销活动
private String displayMills;//展示时长 毫秒数
private String itemId; //商品id
private String activityId; //营销活动id
}
2.4.3.8 消息通知日志类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 消息通知日志类
*/
@Data
public class AppNotification {
private String action;//动作:通知产生=1,通知弹出=2,通知点击=3,常驻通知展示(不重复上 报,一天之内只报一次)
private String type;//通知 id:预警通知=1,天气预报(早=2,晚=3),常驻=4
private String ap_time;//客户端弹出时间
private String content;//备用字段
}
2.4.3.9 用户后台活跃类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 用户后台活跃类
*/
@Data
public class AppActive {
private String active_source;//1=upgrade,2=download(下载),3=plugin_upgrade
}
2.4.3.10 用户评论类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 用户评论类
*/
@Data
public class AppComment {
private int comment_id;//评论表
private int userid;//用户 id
private int p_comment_id;//父级评论 id(为 0 则是一级评论,不为 0 则是回复)
private String content;//评论内容
private String addtime;//创建时间
private int other_id;//评论的相关 id
private int praise_count;//点赞数量
private int reply_count;//回复数量
}
2.4.3.11 用户收藏类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 用户收藏类
*/
@Data
public class AppFavorites {
private int id;//主键
private int course_id;//商品 id
private int userid;//用户 ID
private String add_time;//创建时间
}
2.4.3.12 用户点赞类
import lombok.Data;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 用户点赞类
*/
@Data
public class AppPraise {
private int id; //主键 id
private int userid;//用户 id
private int target_id;//点赞的对象 id
private int type;//点赞类型 1 问答点赞 2 问答评论点赞 3 文章点赞数 4 评论点赞
private String add_time;//添加时间
}
2.4.4 启动类
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONArray;
import com.alibaba.fastjson.JSONObject;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.io.UnsupportedEncodingException;
import java.util.Random;
/**
* @author Heaton
* @email 70416450@qq.com
* @date 2020/4/25 14:54
* @describe 启动类
*/
public class App {
private final static Logger logger = LoggerFactory.getLogger(App.class);
private static Random rand = new Random();
// 设备id
private static int s_mid = 0;
// 用户id
private static int s_uid = 0;
// 商品id
private static int s_goodsid = 0;
public static void main(String[] args) {
// 参数一:控制发送每条的延时时间,默认是0
Long delay = args.length > 0 ? Long.parseLong(args[0]) : 0L;
// 参数二:循环遍历次数
int loop_len = args.length > 1 ? Integer.parseInt(args[1]) : 1000;
// 生成数据
generateLog(delay, loop_len);
}
private static void generateLog(Long delay, int loop_len) {
for (int i = 0; i < loop_len; i++) {
int flag = rand.nextInt(2);
switch (flag) {
case (0):
//应用启动
AppStart appStart = generateStart();
String jsonString = JSON.toJSONString(appStart);
//控制台打印
logger.info(jsonString);
break;
case (1):
JSONObject json = new JSONObject();
json.put("ap", "app");
json.put("cm", generateComFields());
JSONArray eventsArray = new JSONArray();
// 事件日志
// 商品点击,展示
if (rand.nextBoolean()) {
eventsArray.add(generateDisplay());
json.put("et", eventsArray);
}
// 商品详情页
if (rand.nextBoolean()) {
eventsArray.add(generateNewsDetail());
json.put("et", eventsArray);
}
// 商品列表页
if (rand.nextBoolean()) {
eventsArray.add(generateNewList());
json.put("et", eventsArray);
}
// 广告
if (rand.nextBoolean()) {
eventsArray.add(generateAd());
json.put("et", eventsArray);
}
// 消息通知
if (rand.nextBoolean()) {
eventsArray.add(generateNotification());
json.put("et", eventsArray);
}
// 用户后台活跃
if (rand.nextBoolean()) {
eventsArray.add(generateBackground());
json.put("et", eventsArray);
}
//故障日志
if (rand.nextBoolean()) {
eventsArray.add(generateError());
json.put("et", eventsArray);
}
// 用户评论
if (rand.nextBoolean()) {
eventsArray.add(generateComment());
json.put("et", eventsArray);
}
// 用户收藏
if (rand.nextBoolean()) {
eventsArray.add(generateFavorites());
json.put("et", eventsArray);
}
// 用户点赞
if (rand.nextBoolean()) {
eventsArray.add(generatePraise());
json.put("et", eventsArray);
}
//时间
long millis = System.currentTimeMillis();
//控制台打印
logger.info(millis + "|" + json.toJSONString());
break;
}
// 延迟
try {
Thread.sleep(delay);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
/**
* 公共字段设置
*/
private static JSONObject generateComFields() {
AppBase appBase = new AppBase();
//设备id
appBase.setMid(s_mid + "");
s_mid++;
// 用户id
appBase.setUid(s_uid + "");
s_uid++;
// 程序版本号 5,6等
appBase.setVc("" + rand.nextInt(20));
//程序版本名 v1.1.1
appBase.setVn("1." + rand.nextInt(4) + "." + rand.nextInt(10));
// 安卓系统版本
appBase.setOs("8." + rand.nextInt(3) + "." + rand.nextInt(10));
// 语言 es,en,pt
int flag = rand.nextInt(3);
switch (flag) {
case (0):
appBase.setL("es");
break;
case (1):
appBase.setL("en");
break;
case (2):
appBase.setL("pt");
break;
}
// 渠道号 从哪个渠道来的
appBase.setSr(getRandomChar(1));
// 区域
flag = rand.nextInt(2);
switch (flag) {
case 0:
appBase.setAr("BR");
case 1:
appBase.setAr("MX");
}
// 手机品牌 ba ,手机型号 md,就取2位数字了
flag = rand.nextInt(3);
switch (flag) {
case 0:
appBase.setBa("Sumsung");
appBase.setMd("sumsung-" + rand.nextInt(20));
break;
case 1:
appBase.setBa("Huawei");
appBase.setMd("Huawei-" + rand.nextInt(20));
break;
case 2:
appBase.setBa("HTC");
appBase.setMd("HTC-" + rand.nextInt(20));
break;
}
// 嵌入sdk的版本
appBase.setSv("V2." + rand.nextInt(10) + "." + rand.nextInt(10));
// gmail
appBase.setG(getRandomCharAndNumr(8) + "@gmail.com");
// 屏幕宽高 hw
flag = rand.nextInt(4);
switch (flag) {
case 0:
appBase.setHw("640*960");
break;
case 1:
appBase.setHw("640*1136");
break;
case 2:
appBase.setHw("750*1134");
break;
case 3:
appBase.setHw("1080*1920");
break;
}
// 客户端产生日志时间
long millis = System.currentTimeMillis();
appBase.setT("" + (millis - rand.nextInt(99999999)));
// 手机网络模式 3G,4G,WIFI
flag = rand.nextInt(3);
switch (flag) {
case 0:
appBase.setNw("3G");
break;
case 1:
appBase.setNw("4G");
break;
case 2:
appBase.setNw("WIFI");
break;
}
// 拉丁美洲 西经34°46′至西经117°09;北纬32°42′至南纬53°54′
// 经度
appBase.setLn((-34 - rand.nextInt(83) - rand.nextInt(60) / 10.0) + "");
// 纬度
appBase.setLa((32 - rand.nextInt(85) - rand.nextInt(60) / 10.0) + "");
return (JSONObject) JSON.toJSON(appBase);
}
/**
* 商品展示事件
*/
private static JSONObject generateDisplay() {
AppDisplay appDisplay = new AppDisplay();
boolean boolFlag = rand.nextInt(10) < 7;
// 动作:曝光商品=1,点击商品=2,
if (boolFlag) {
appDisplay.setAction("1");
} else {
appDisplay.setAction("2");
}
// 商品id
String goodsId = s_goodsid + "";
s_goodsid++;
appDisplay.setGoodsid(goodsId);
// 顺序 设置成6条吧
int flag = rand.nextInt(6);
appDisplay.setPlace("" + flag);
// 曝光类型
flag = 1 + rand.nextInt(2);
appDisplay.setExtend1("" + flag);
// 分类
flag = 1 + rand.nextInt(100);
appDisplay.setCategory("" + flag);
JSONObject jsonObject = (JSONObject) JSON.toJSON(appDisplay);
return packEventJson("display", jsonObject);
}
/**
* 商品详情页
*/
private static JSONObject generateNewsDetail() {
AppNewsDetail appNewsDetail = new AppNewsDetail();
// 页面入口来源
int flag = 1 + rand.nextInt(3);
appNewsDetail.setEntry(flag + "");
// 动作
appNewsDetail.setAction("" + (rand.nextInt(4) + 1));
// 商品id
appNewsDetail.setGoodsid(s_goodsid + "");
// 商品来源类型
flag = 1 + rand.nextInt(3);
appNewsDetail.setShowtype(flag + "");
// 商品样式
flag = rand.nextInt(6);
appNewsDetail.setShowtype("" + flag);
// 页面停留时长
flag = rand.nextInt(10) * rand.nextInt(7);
appNewsDetail.setNews_staytime(flag + "");
// 加载时长
flag = rand.nextInt(10) * rand.nextInt(7);
appNewsDetail.setLoading_time(flag + "");
// 加载失败码
flag = rand.nextInt(10);
switch (flag) {
case 1:
appNewsDetail.setType1("102");
break;
case 2:
appNewsDetail.setType1("201");
break;
case 3:
appNewsDetail.setType1("325");
break;
case 4:
appNewsDetail.setType1("433");
break;
case 5:
appNewsDetail.setType1("542");
break;
default:
appNewsDetail.setType1("");
break;
}
// 分类
flag = 1 + rand.nextInt(100);
appNewsDetail.setCategory("" + flag);
JSONObject eventJson = (JSONObject) JSON.toJSON(appNewsDetail);
return packEventJson("newsdetail", eventJson);
}
/**
* 商品列表
*/
private static JSONObject generateNewList() {
AppLoading appLoading = new AppLoading();
// 动作
int flag = rand.nextInt(3) + 1;
appLoading.setAction(flag + "");
// 加载时长
flag = rand.nextInt(10) * rand.nextInt(7);
appLoading.setLoading_time(flag + "");
// 失败码
flag = rand.nextInt(10);
switch (flag) {
case 1:
appLoading.setType1("102");
break;
case 2:
appLoading.setType1("201");
break;
case 3:
appLoading.setType1("325");
break;
case 4:
appLoading.setType1("433");
break;
case 5:
appLoading.setType1("542");
break;
default:
appLoading.setType1("");
break;
}
// 页面 加载类型
flag = 1 + rand.nextInt(2);
appLoading.setLoading_way("" + flag);
// 扩展字段1
appLoading.setExtend1("");
// 扩展字段2
appLoading.setExtend2("");
// 用户加载类型
flag = 1 + rand.nextInt(3);
appLoading.setType("" + flag);
JSONObject jsonObject = (JSONObject) JSON.toJSON(appLoading);
return packEventJson("loading", jsonObject);
}
/**
* 广告相关字段
*/
private static JSONObject generateAd() {
AppAd appAd = new AppAd();
// 入口
int flag = rand.nextInt(3) + 1;
appAd.setEntry(flag + "");
// 动作
flag = rand.nextInt(5) + 1;
appAd.setAction(flag + "");
// 内容类型类型
flag = rand.nextInt(6) + 1;
appAd.setContentType(flag + "");
// 展示样式
flag = rand.nextInt(120000) + 1000;
appAd.setDisplayMills(flag + "");
flag = rand.nextInt(1);
if (flag == 1) {
appAd.setContentType(flag + "");
flag = rand.nextInt(6);
appAd.setItemId(flag + "");
} else {
appAd.setContentType(flag + "");
flag = rand.nextInt(1) + 1;
appAd.setActivityId(flag + "");
}
JSONObject jsonObject = (JSONObject) JSON.toJSON(appAd);
return packEventJson("ad", jsonObject);
}
/**
* 启动日志
*/
private static AppStart generateStart() {
AppStart appStart = new AppStart();
//设备id
appStart.setMid(s_mid + "");
s_mid++;
// 用户id
appStart.setUid(s_uid + "");
s_uid++;
// 程序版本号 5,6等
appStart.setVc("" + rand.nextInt(20));
//程序版本名 v1.1.1
appStart.setVn("1." + rand.nextInt(4) + "." + rand.nextInt(10));
// 安卓系统版本
appStart.setOs("8." + rand.nextInt(3) + "." + rand.nextInt(10));
//设置日志类型
appStart.setEn("start");
// 语言 es,en,pt
int flag = rand.nextInt(3);
switch (flag) {
case (0):
appStart.setL("es");
break;
case (1):
appStart.setL("en");
break;
case (2):
appStart.setL("pt");
break;
}
// 渠道号 从哪个渠道来的
appStart.setSr(getRandomChar(1));
// 区域
flag = rand.nextInt(2);
switch (flag) {
case 0:
appStart.setAr("BR");
case 1:
appStart.setAr("MX");
}
// 手机品牌 ba ,手机型号 md,就取2位数字了
flag = rand.nextInt(3);
switch (flag) {
case 0:
appStart.setBa("Sumsung");
appStart.setMd("sumsung-" + rand.nextInt(20));
break;
case 1:
appStart.setBa("Huawei");
appStart.setMd("Huawei-" + rand.nextInt(20));
break;
case 2:
appStart.setBa("HTC");
appStart.setMd("HTC-" + rand.nextInt(20));
break;
}
// 嵌入sdk的版本
appStart.setSv("V2." + rand.nextInt(10) + "." + rand.nextInt(10));
// gmail
appStart.setG(getRandomCharAndNumr(8) + "@gmail.com");
// 屏幕宽高 hw
flag = rand.nextInt(4);
switch (flag) {
case 0:
appStart.setHw("640*960");
break;
case 1:
appStart.setHw("640*1136");
break;
case 2:
appStart.setHw("750*1134");
break;
case 3:
appStart.setHw("1080*1920");
break;
}
// 客户端产生日志时间
long millis = System.currentTimeMillis();
appStart.setT("" + (millis - rand.nextInt(99999999)));
// 手机网络模式 3G,4G,WIFI
flag = rand.nextInt(3);
switch (flag) {
case 0:
appStart.setNw("3G");
break;
case 1:
appStart.setNw("4G");
break;
case 2:
appStart.setNw("WIFI");
break;
}
// 拉丁美洲 西经34°46′至西经117°09;北纬32°42′至南纬53°54′
// 经度
appStart.setLn((-34 - rand.nextInt(83) - rand.nextInt(60) / 10.0) + "");
// 纬度
appStart.setLa((32 - rand.nextInt(85) - rand.nextInt(60) / 10.0) + "");
// 入口
flag = rand.nextInt(5) + 1;
appStart.setEntry(flag + "");
// 开屏广告类型
flag = rand.nextInt(2) + 1;
appStart.setOpen_ad_type(flag + "");
// 状态
flag = rand.nextInt(10) > 8 ? 2 : 1;
appStart.setAction(flag + "");
// 加载时长
appStart.setLoading_time(rand.nextInt(20) + "");
// 失败码
flag = rand.nextInt(10);
switch (flag) {
case 1:
appStart.setDetail("102");
break;
case 2:
appStart.setDetail("201");
break;
case 3:
appStart.setDetail("325");
break;
case 4:
appStart.setDetail("433");
break;
case 5:
appStart.setDetail("542");
break;
default:
appStart.setDetail("");
break;
}
// 扩展字段
appStart.setExtend1("");
return appStart;
}
/**
* 消息通知
*/
private static JSONObject generateNotification() {
AppNotification appNotification = new AppNotification();
int flag = rand.nextInt(4) + 1;
// 动作
appNotification.setAction(flag + "");
// 通知id
flag = rand.nextInt(4) + 1;
appNotification.setType(flag + "");
// 客户端弹时间
appNotification.setAp_time((System.currentTimeMillis() - rand.nextInt(99999999)) + "");
// 备用字段
appNotification.setContent("");
JSONObject jsonObject = (JSONObject) JSON.toJSON(appNotification);
return packEventJson("notification", jsonObject);
}
/**
* 后台活跃
*/
private static JSONObject generateBackground() {
AppActive appActive_background = new AppActive();
// 启动源
int flag = rand.nextInt(3) + 1;
appActive_background.setActive_source(flag + "");
JSONObject jsonObject = (JSONObject) JSON.toJSON(appActive_background);
return packEventJson("active_background", jsonObject);
}
/**
* 错误日志数据
*/
private static JSONObject generateError() {
AppErrorLog appErrorLog = new AppErrorLog();
String[] errorBriefs = {"at cn.lift.dfdf.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)", "at cn.lift.appIn.control.CommandUtil.getInfo(CommandUtil.java:67)"}; //错误摘要
String[] errorDetails = {"java.lang.NullPointerException\\n " + "at cn.lift.appIn.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)\\n " + "at cn.lift.dfdf.web.AbstractBaseController.validInbound", "at cn.lift.dfdfdf.control.CommandUtil.getInfo(CommandUtil.java:67)\\n " + "at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)\\n" + " at java.lang.reflect.Method.invoke(Method.java:606)\\n"}; //错误详情
//错误摘要
appErrorLog.setErrorBrief(errorBriefs[rand.nextInt(errorBriefs.length)]);
//错误详情
appErrorLog.setErrorDetail(errorDetails[rand.nextInt(errorDetails.length)]);
JSONObject jsonObject = (JSONObject) JSON.toJSON(appErrorLog);
return packEventJson("error", jsonObject);
}
/**
* 为各个事件类型的公共字段(时间、事件类型、Json数据)拼接
*/
private static JSONObject packEventJson(String eventName, JSONObject jsonObject) {
JSONObject eventJson = new JSONObject();
eventJson.put("ett", (System.currentTimeMillis() - rand.nextInt(99999999)) + "");
eventJson.put("en", eventName);
eventJson.put("kv", jsonObject);
return eventJson;
}
/**
* 获取随机字母组合
*
* @param length 字符串长度
*/
private static String getRandomChar(Integer length) {
StringBuilder str = new StringBuilder();
Random random = new Random();
for (int i = 0; i < length; i++) {
// 字符串
str.append((char) (65 + random.nextInt(26)));// 取得大写字母
}
return str.toString();
}
/**
* 获取随机字母数字组合
*
* @param length 字符串长度
*/
private static String getRandomCharAndNumr(Integer length) {
StringBuilder str = new StringBuilder();
Random random = new Random();
for (int i = 0; i < length; i++) {
boolean b = random.nextBoolean();
if (b) { // 字符串
// int choice = random.nextBoolean() ? 65 : 97; 取得65大写字母还是97小写字母
str.append((char) (65 + random.nextInt(26)));// 取得大写字母
} else { // 数字
str.append(String.valueOf(random.nextInt(10)));
}
}
return str.toString();
}
/**
* 收藏
*/
private static JSONObject generateFavorites() {
AppFavorites favorites = new AppFavorites();
favorites.setCourse_id(rand.nextInt(10));
favorites.setUserid(rand.nextInt(10));
favorites.setAdd_time((System.currentTimeMillis() - rand.nextInt(99999999)) + "");
JSONObject jsonObject = (JSONObject) JSON.toJSON(favorites);
return packEventJson("favorites", jsonObject);
}
/**
* 点赞
*/
private static JSONObject generatePraise() {
AppPraise praise = new AppPraise();
praise.setId(rand.nextInt(10));
praise.setUserid(rand.nextInt(10));
praise.setTarget_id(rand.nextInt(10));
praise.setType(rand.nextInt(4) + 1);
praise.setAdd_time((System.currentTimeMillis() - rand.nextInt(99999999)) + "");
JSONObject jsonObject = (JSONObject) JSON.toJSON(praise);
return packEventJson("praise", jsonObject);
}
/**
* 评论
*/
private static JSONObject generateComment() {
AppComment comment = new AppComment();
comment.setComment_id(rand.nextInt(10));
comment.setUserid(rand.nextInt(10));
comment.setP_comment_id(rand.nextInt(5));
comment.setContent(getCONTENT());
comment.setAddtime((System.currentTimeMillis() - rand.nextInt(99999999)) + "");
comment.setOther_id(rand.nextInt(10));
comment.setPraise_count(rand.nextInt(1000));
comment.setReply_count(rand.nextInt(200));
JSONObject jsonObject = (JSONObject) JSON.toJSON(comment);
return packEventJson("comment", jsonObject);
}
/**
* 生成单个汉字
*/
private static char getRandomChar() {
String str = "";
int hightPos; //
int lowPos;
Random random = new Random();
//随机生成汉子的两个字节
hightPos = (176 + Math.abs(random.nextInt(39)));
lowPos = (161 + Math.abs(random.nextInt(93)));
byte[] b = new byte[2];
b[0] = (Integer.valueOf(hightPos)).byteValue();
b[1] = (Integer.valueOf(lowPos)).byteValue();
try {
str = new String(b, "GBK");
} catch (UnsupportedEncodingException e) {
e.printStackTrace();
System.out.println("错误");
}
return str.charAt(0);
}
/**
* 拼接成多个汉字
*/
private static String getCONTENT() {
StringBuilder str = new StringBuilder();
for (int i = 0; i < rand.nextInt(100); i++) {
str.append(getRandomChar());
}
return str.toString();
}
}
2.4.5 启动测试
注意,需要将日志模拟放到2台服务器上,模拟日志每一条中即包括公共日志,又包含事件日志,需要flume拦截器进行日志分发,当然也需要两个flume-ng来做这个事情
打包上传2台服务器节点,生产数据为后面的测试做准备,这里为用户目录test文件夹下
通过参数控制生成消息速度及产量(如下 2秒一条,打印1000条)
#控制时间及条数
nohup java -jar data-producer-1.0-SNAPSHOT-jar-with-dependencies.jar 2000 1000 &
#监控日志
tail -F /root/logs/*.log
通过www.json.cn查看数据格式
3 创建KafKa-Topic
- 创建启动日志主题:topic_start
- 创建事件日志主题:topic_event
4 Flume准备
共分为2组flume
第一组:将服务器日志收集,并使用Kafka-Channels将数据发往Kafka不同的Topic,其中使用拦截器进行公共日志和事件日志的分发,
第二组:收集Kafka数据,使用Flie-Channels缓存数据,最终发往Hdfs保存
4.1 Flume:File->Kafka配置编写
- vim /root/test/file-flume-kafka.conf
#1 定义组件
a1.sources=r1
a1.channels=c1 c2
# 2 source配置 type类型 positionFile记录日志读取位置 filegroups读取哪些目录 app.+为读取什么开头 channels发往哪里
a1.sources.r1.type = TAILDIR
a1.sources.r1.positionFile = /root/test/flume/log_position.json
a1.sources.r1.filegroups = f1
a1.sources.r1.filegroups.f1 = /root/logs/app.+
a1.sources.r1.fileHeader = true
a1.sources.r1.channels = c1 c2
#3 拦截器 这里2个为自定义的拦截器 multiplexing为类型区分选择器 header头用于区分类型 mapping匹配头
a1.sources.r1.interceptors = i1 i2
a1.sources.r1.interceptors.i1.type = com.heaton.bigdata.flume.LogETLInterceptor$Builder
a1.sources.r1.interceptors.i2.type = com.heaton.bigdata.flume.LogTypeInterceptor$Builder
a1.sources.r1.selector.type = multiplexing
a1.sources.r1.selector.header = topic
a1.sources.r1.selector.mapping.topic_start = c1
a1.sources.r1.selector.mapping.topic_event = c2
#4 channel配置 kafkaChannel
a1.channels.c1.type = org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c1.kafka.bootstrap.servers = cdh01.cm:9092,cdh02.cm:9092,cdh03.cm:9092
a1.channels.c1.kafka.topic = topic_start
a1.channels.c1.parseAsFlumeEvent = false
a1.channels.c1.kafka.consumer.group.id = flume-consumer
a1.channels.c2.type =org.apache.flume.channel.kafka.KafkaChannel
a1.channels.c2.kafka.bootstrap.servers = cdh01.cm:9092,cdh02.cm:9092,cdh03.cm:9092
a1.channels.c2.kafka.topic = topic_event
a1.channels.c2.parseAsFlumeEvent = false
a1.channels.c2.kafka.consumer.group.id = flume-consumer
在生产日志的2台服务器节点上创建flume配置文件。
LogETLInterceptor,LogTypeInterceptor为自定义拦截
4.2 自定义拦截器
data-flume工程
- LogUtils
import org.apache.commons.lang.math.NumberUtils;
public class LogUtils {
public static boolean validateEvent(String log) {
/** 服务器时间 | json
1588319303710|{
"cm":{
"ln":"-51.5","sv":"V2.0.7","os":"8.0.8","g":"L1470998@gmail.com","mid":"13",
"nw":"4G","l":"en","vc":"7","hw":"640*960","ar":"MX","uid":"13","t":"1588291826938",
"la":"-38.2","md":"Huawei-14","vn":"1.3.6","ba":"Huawei","sr":"Y"
},
"ap":"app",
"et":[{
"ett":"1588228193191","en":"ad","kv":{"activityId":"1","displayMills":"113201","entry":"3","action":"5","contentType":"0"}
},{
"ett":"1588300304713","en":"notification","kv":{"ap_time":"1588277440794","action":"2","type":"3","content":""}
},{
"ett":"1588249203743","en":"active_background","kv":{"active_source":"3"}
},{
"ett":"1588254200122","en":"favorites","kv":{"course_id":5,"id":0,"add_time":"1588264138625","userid":0}
},{
"ett":"1588281152824","en":"praise","kv":{"target_id":4,"id":3,"type":3,"add_time":"1588307696417","userid":8}
}]
}
*/
// 1 切割
String[] logContents = log.split("\\|");
// 2 校验
if (logContents.length != 2) {
return false;
}
//3 校验服务器时间
if (logContents[0].length() != 13 || !NumberUtils.isDigits(logContents[0])) {
return false;
}
// 4 校验 json
if (!logContents[1].trim().startsWith("{")
|| !logContents[1].trim().endsWith("}")) {
return false;
}
return true;
}
public static boolean validateStart(String log) {
/**
{
"action":"1","ar":"MX","ba":"HTC","detail":"201","en":"start","entry":"4","extend1":"",
"g":"4Z174142@gmail.com","hw":"750*1134","l":"pt","la":"-29.7","ln":"-48.1","loading_time":"0",
"md":"HTC-18","mid":"14","nw":"3G","open_ad_type":"2","os":"8.0.8","sr":"D","sv":"V2.8.2",
"t":"1588251833523","uid":"14","vc":"15","vn":"1.2.9"
}
*/
if (log == null) {
return false;
}
// 校验 json
if (!log.trim().startsWith("{") || !log.trim().endsWith("}")) {
return false;
}
return true;
}
}
- LogETLInterceptor
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
public class LogETLInterceptor implements Interceptor {
@Override
public void initialize() {
//初始化
}
@Override
public Event intercept(Event event) {
// 1 获取数据
byte[] body = event.getBody();
String log = new String(body, Charset.forName("UTF-8"));
// 2 判断数据类型并向 Header 中赋值
if (log.contains("start")) {
if (LogUtils.validateStart(log)) {
return event;
}
} else {
if (LogUtils.validateEvent(log)) {
return event;
}
}
// 3 返回校验结果
return null;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> interceptors = new ArrayList<>();
for (Event event : events) {
Event intercept1 = intercept(event);
if (intercept1 != null) {
interceptors.add(intercept1);
}
}
return interceptors;
}
@Override
public void close() {
//关闭
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new LogETLInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
- LogTypeInterceptor
import org.apache.flume.Context;
import org.apache.flume.Event;
import org.apache.flume.interceptor.Interceptor;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
public class LogTypeInterceptor implements Interceptor {
@Override
public void initialize() {
}
@Override
public Event intercept(Event event) {
// 区分日志类型: body header
// 1 获取 body 数据
byte[] body = event.getBody();
String log = new String(body, Charset.forName("UTF-8"));
// 2 获取 header
Map<String, String> headers = event.getHeaders();
// 3 判断数据类型并向 Header 中赋值
if (log.contains("start")) {
headers.put("topic", "topic_start");
} else {
headers.put("topic", "topic_event");
}
return event;
}
@Override
public List<Event> intercept(List<Event> events) {
ArrayList<Event> interceptors = new ArrayList<>();
for (Event event : events) {
Event intercept1 = intercept(event);
interceptors.add(intercept1);
}
return interceptors;
}
@Override
public void close() {
}
public static class Builder implements Interceptor.Builder {
@Override
public Interceptor build() {
return new LogTypeInterceptor();
}
@Override
public void configure(Context context) {
}
}
}
将项目打包放入Flume/lib目录下(所有节点):
CDH路径参考:/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/lib/flume-ng/lib
4.3 Flume启停脚本
- vim /root/log-kafka-flume.sh
#! /bin/bash
case $1 in
"start"){
for i in cdh02.cm cdh03.cm
do
echo " --------启动 $i 消费 flume-------"
ssh $i "nohup flume-ng agent --conf-file /root/test/file-flume-kafka.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/root/test/file-flume-kafka.log 2>&1 &"
done
};;
"stop"){
for i in cdh02.cm cdh03.cm
do
echo " --------停止 $i 消费 flume-------"
ssh $i "ps -ef | grep file-flume-kafka | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
4.4 Flume:Kafka->HDFS配置编写
在第三台服务上准备
- vim /root/test/kafka-flume-hdfs.conf
## 组件
a1.sources=r1 r2
a1.channels=c1 c2
a1.sinks=k1 k2
## Kafka-source1
a1.sources.r1.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r1.batchSize = 5000
a1.sources.r1.batchDurationMillis = 2000
a1.sources.r1.kafka.bootstrap.servers= cdh01.cm:9092,cdh02.cm:9092,cdh03.cm:9092
a1.sources.r1.kafka.topics = topic_start
## Kafka- source2
a1.sources.r2.type = org.apache.flume.source.kafka.KafkaSource
a1.sources.r2.batchSize = 5000
a1.sources.r2.batchDurationMillis = 2000
a1.sources.r2.kafka.bootstrap.servers = cdh01.cm:9092,cdh02.cm:9092,cdh03.cm:9092
a1.sources.r2.kafka.topics = topic_event
## channel1
a1.channels.c1.type = file
##索引文件路径
a1.channels.c1.checkpointDir=/root/test/flume/checkpoint/behavior1
##持久化路径
a1.channels.c1.dataDirs = /root/test/flume/data/behavior1/
a1.channels.c1.maxFileSize = 2146435071
a1.channels.c1.capacity = 1000000
a1.channels.c1.keep-alive = 6
## channel2
a1.channels.c2.type = file
##索引文件路径
a1.channels.c1.checkpointDir=/root/test/flume/checkpoint/behavior2
##持久化路径
a1.channels.c1.dataDirs = /root/test/flume/data/behavior2/
a1.channels.c2.maxFileSize = 2146435071
a1.channels.c2.capacity = 1000000
a1.channels.c2.keep-alive = 6
## HDFS-sink1
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=/origin_data/gmall/log/topic_start/%Y-%m-%d
a1.sinks.k1.hdfs.filePrefix = logstart-
## HDFS-sink2
a1.sinks.k2.type = hdfs
a1.sinks.k2.hdfs.path = /origin_data/gmall/log/topic_event/%Y-%m-%d
a1.sinks.k2.hdfs.filePrefix = logevent-
## 不要产生大量小文件
a1.sinks.k1.hdfs.rollInterval = 10
a1.sinks.k1.hdfs.rollSize = 134217728
a1.sinks.k1.hdfs.rollCount = 0
a1.sinks.k2.hdfs.rollInterval = 50
a1.sinks.k2.hdfs.rollSize = 134217728
a1.sinks.k2.hdfs.rollCount = 0
## 控制输出文件是原生文件。
a1.sinks.k1.hdfs.fileType = CompressedStream
a1.sinks.k2.hdfs.fileType = CompressedStream
a1.sinks.k1.hdfs.codeC = snappy
a1.sinks.k2.hdfs.codeC = snappy
## 组件拼装
a1.sources.r1.channels = c1
a1.sinks.k1.channel= c1
a1.sources.r2.channels = c2
a1.sinks.k2.channel= c2
4.5 Flume启停脚本
在第三台服务上准备
- vim /root/test/kafka-hdfs-flume.sh
#! /bin/bash
case $1 in
"start"){
for i in cdh01.cm
do
echo " --------启动 $i 消费 flume-------"
ssh $i "nohup flume-ng agent --conf-file /root/test/kafka-flume-hdfs.conf --name a1 -Dflume.root.logger=INFO,LOGFILE >/root/test/kafka-flume-hdfs.log 2>&1 &"
done
};;
"stop"){
for i in cdh01.cm
do
echo " --------停止 $i 消费 flume-------"
ssh $i "ps -ef | grep kafka-flume-hdfs | grep -v grep |awk '{print \$2}' | xargs kill"
done
};;
esac
5 业务数据
此模块后主要针对于企业报表决策,为数据分析提供数据支持,解决大数据量下,无法快速产出报表,及一些即席业务需求的快速展示提供数据支撑。划分企业离线与实时业务,用离线的方式直观的管理数据呈现,为实时方案奠定良好基础。
5.1 电商业务流程
5.2 SKU-SPU
- SKU(Stock Keeping Unit):库存量基本单位,现在已经被引申为产品统一编号的简称, 每种产品均对应有唯一的 SKU 号。
- SPU(Standard Product Unit):是商品信息聚合的最小单位,是一组可复用、易检索的 标准化信息集合。
- 总结:黑鲨3 手机就是 SPU。一台铠甲灰、256G 内存的就是 SKU。
5.3 业务表结构
5.3.1 订单表(order_info)
5.3.2 订单详情表(order_detail)
5.3.3 SKU 商品表(sku_info)
5.3.4 用户表(user_info)
5.3.5 商品一级分类表(base_category1)
5.3.6 商品二级分类表(base_category2)
5.3.7 商品三级分类表(base_category3)
5.3.8 支付流水表(payment_info)
5.3.9 省份表(base_province)
5.3.10 地区表(base_region)
5.3.11 品牌表(base_trademark)
5.3.12 订单状态表(order_status_log)
5.3.13 SPU 商品表(spu_info)
5.3.14 商品评论表(comment_info)
5.3.15 退单表(order_refund_info)
5.3.16 加入购物车表(cart_info)
5.3.17 商品收藏表(favor_info)
5.3.18 优惠券领用表(coupon_use)
5.3.19 优惠券表(coupon_info)
5.3.20 活动表(activity_info)
5.3.21 活动订单关联表(activity_order)
5.3.22 优惠规则表(activity_rule)
5.3.23 编码字典表(base_dic)
5.3.24 活动参与商品表(activity_sku)
5.4 时间表结构
5.4.1 时间表(date_info)
5.4.2 假期表(holiday_info)
5.4.3 假期年表(holiday_year)
6 同步策略及数仓分层
数据同步策略的类型包括:全量表、增量表、新增及变化表
-
全量表:每天一个分区,存储完整的数据。
-
增量表:每天新增数据放在一个分区,存储新增加的数据。
-
新增及变化表:每天新增和变化的数据放在一个分区,存储新增加的数据和变化的数据。
-
特殊表:没有分区,只需要存储一次。
6.1 全量策略
每日全量,每天存储一份完整数据,作为一个分区。
适合场景:表数据量不大,且有新增或修改业务的场景
例如:品牌表、编码表、商品分类表、优惠规则表、活动表、商品表、加购表、收藏表、SKU/SPU表
6.2 增量策略
每日增量,每天储存一份增量数据,作为一个分区
适合场景:表数据量大,且只会有新增数据的场景。
例如:退单表、订单状态表、支付流水表、订单详情表、活动与订单关联表、商品评论表
6.3 新增及变化策略
每日新增及变化,储存创建时间和操作时间都是今天的数据,作为一个分区
适合场景:表数据量大,既会有新增,又会有修改。
例如:用户表、订单表、优惠卷领用表。
6.4 特殊策略
某些特殊的维度表,可不必遵循上述同步策略,在数仓中只做一次同步,数据不变化不更新
适合场景:表数据几乎不会变化
1.客观世界维度:没变化的客观世界的维度(比如性别,地区,民族,政治成分,鞋子尺码)可以只存一 份固定值
2.日期维度:日期维度可以一次性导入一年或若干年的数据。
3.地区维度:省份表、地区表
6.5 分析业务表同步策略
考虑到特殊表可能会缓慢变化,比如打仗占地盘,地区表可能就会发生变化,故也选择分区全量同步策略。
6.6 数仓分层
- 为什么分层:
- 简单化:把复杂的任务分解为多层来完成,每层处理各自的任务,方便定位问题。
- 减少重复开发:规范数据分层,通过中间层数据,能够极大的减少重复计算,增加结果复用性。
- 隔离数据:不论是数据异常还是数据敏感性,使真实数据和统计数据解耦。
- 一般在DWD层进行维度建模
- ODS层:原始数据层,存放原始数据
- DWD层:对ODS层数据进行清洗(去空、脏数据,转换类型等),维度退化,脱敏(保护隐私)
- DWS层:以DWD为基础,按天进行汇总
- DWT层:以DWS为基础,按主题进行汇总
- ADS层:为各种数据分析报表提供数据
7 Sqoop同步数据
Sqoop注意点:
Hive 中的 Null 在底层是以“\N”来存储,而 MySQL 中的 Null 在底层就是 Null,为了 保证数据两端的一致性。
- 在导出数据时采用 --input-null-string 和 --input-null-non-string
- 导入数据时采用 --null-string 和 --null-non-string
本例思路为:sqoop抽取mysql数据上传至Hdfs上,存储为parquet文件,在建立hive-ods表,使用对应数据。
使用DolphinScheduler调度执行脚本。
- Sqoop采集Mysql和Hive数据格式
mysql字段类型 | hive:ods字段类型 | hive:dwd-ads字段类型 |
---|---|---|
tinyint | tinyint | tinyint |
int | int | int |
bigint | bigint | bigint |
varchar | string | string |
datetime | bigint | string |
bit | boolean | int |
double | double | double |
decimal | decimal | decimal |
8 ods层构建
8.1 ods建表
hive创建ods数据库,使用DolphinScheduler创建数据源,在创建DAG时需要选择hive库。
顺便将dwd,dws,dwt,ads一起创建了
- base_dic
drop table if exists ods.mall__base_dic
CREATE EXTERNAL TABLE `ods.mall__base_dic`(
`dic_code` string COMMENT '编号',
`dic_name` string COMMENT '编码名称',
`parent_code` string COMMENT '父编号',
`create_time` bigint COMMENT '创建日期',
`operate_time` bigint COMMENT '修改日期'
) COMMENT '编码字典表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_dic/'
tblproperties ("parquet.compression"="snappy")
- base_trademark
drop table if exists ods.mall__base_trademark
CREATE EXTERNAL TABLE `ods.mall__base_trademark`(
`tm_id` string COMMENT '品牌id',
`tm_name` string COMMENT '品牌名称'
) COMMENT '品牌表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_trademark/'
tblproperties ("parquet.compression"="snappy")
- base_category3
drop table if exists ods.mall__base_category3
CREATE EXTERNAL TABLE `ods.mall__base_category3`(
`id` bigint COMMENT '编号',
`name` string COMMENT '三级分类名称',
`category2_id` bigint COMMENT '二级分类编号'
) COMMENT '三级分类表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_category3/'
tblproperties ("parquet.compression"="snappy")
- base_category2
drop table if exists ods.mall__base_category2
CREATE EXTERNAL TABLE `ods.mall__base_category2`(
`id` bigint COMMENT '编号',
`name` string COMMENT '二级分类名称',
`category1_id` bigint COMMENT '一级分类编号'
) COMMENT '二级分类表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_category2/'
tblproperties ("parquet.compression"="snappy")
- base_category1
drop table if exists ods.mall__base_category1
CREATE EXTERNAL TABLE `ods.mall__base_category1`(
`id` bigint COMMENT '编号',
`name` string COMMENT '分类名称'
) COMMENT '一级分类表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_category1/'
tblproperties ("parquet.compression"="snappy")
- activity_rule
drop table if exists ods.mall__activity_rule
CREATE EXTERNAL TABLE `ods.mall__activity_rule`(
`id` int COMMENT '编号',
`activity_id` int COMMENT '类型',
`condition_amount` decimal(16,2) COMMENT '满减金额',
`condition_num` bigint COMMENT '满减件数',
`benefit_amount` decimal(16,2) COMMENT '优惠金额',
`benefit_discount` bigint COMMENT '优惠折扣',
`benefit_level` bigint COMMENT '优惠级别'
) COMMENT '优惠规则'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/activity_rule/'
tblproperties ("parquet.compression"="snappy")
- activity_info
drop table if exists ods.mall__activity_info
CREATE EXTERNAL TABLE `ods.mall__activity_info`(
`id` bigint COMMENT '活动id',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` bigint COMMENT '开始时间',
`end_time` bigint COMMENT '结束时间',
`create_time` bigint COMMENT '创建时间'
) COMMENT '活动表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/activity_info/'
tblproperties ("parquet.compression"="snappy")
- activity_sku
drop table if exists ods.mall__activity_sku
CREATE EXTERNAL TABLE `ods.mall__activity_sku`(
`id` bigint COMMENT '编号',
`activity_id` bigint COMMENT '活动id',
`sku_id` bigint COMMENT 'sku_id',
`create_time` bigint COMMENT '创建时间'
) COMMENT '活动参与商品'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/activity_sku/'
tblproperties ("parquet.compression"="snappy")
- cart_info
drop table if exists ods.mall__cart_info
CREATE EXTERNAL TABLE `ods.mall__cart_info`(
`id` bigint COMMENT '编号',
`user_id` bigint COMMENT '用户id',
`sku_id` bigint COMMENT 'sku_id',
`cart_price` decimal(10,2) COMMENT '放入购物车时价格',
`sku_num` bigint COMMENT '数量',
`sku_name` string COMMENT 'sku名称',
`create_time` bigint COMMENT '创建时间',
`operate_time` bigint COMMENT '修改时间',
`is_ordered` bigint COMMENT '是否已经下单',
`order_time` bigint COMMENT '下单时间'
) COMMENT '购物车表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/cart_info/'
tblproperties ("parquet.compression"="snappy")
- favor_info
drop table if exists ods.mall__favor_info
CREATE EXTERNAL TABLE `ods.mall__favor_info`(
`id` bigint COMMENT '编号',
`user_id` bigint COMMENT '用户id',
`sku_id` bigint COMMENT 'sku_id',
`spu_id` bigint COMMENT '商品id',
`is_cancel` string COMMENT '是否已取消 0 正常 1 已取消',
`create_time` bigint COMMENT '创建时间',
`cancel_time` bigint COMMENT '修改时间'
) COMMENT '商品收藏表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/favor_info/'
tblproperties ("parquet.compression"="snappy")
- coupon_info
drop table if exists ods.mall__coupon_info
CREATE EXTERNAL TABLE `ods.mall__coupon_info`(
`id` bigint COMMENT '购物券编号',
`coupon_name` string COMMENT '购物券名称',
`coupon_type` string COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` decimal(10,2) COMMENT '满额数',
`condition_num` bigint COMMENT '满件数',
`activity_id` bigint COMMENT '活动编号',
`benefit_amount` decimal(16,2) COMMENT '减金额',
`benefit_discount` bigint COMMENT '折扣',
`create_time` bigint COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1、商品 2、品类 3、品牌',
`spu_id` bigint COMMENT '商品id',
`tm_id` bigint COMMENT '品牌id',
`category3_id` bigint COMMENT '品类id',
`limit_num` int COMMENT '最多领用次数',
`operate_time` bigint COMMENT '修改时间',
`expire_time` bigint COMMENT '过期时间'
) COMMENT '优惠券表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/coupon_info/'
tblproperties ("parquet.compression"="snappy")
- sku_info
drop table if exists ods.mall__sku_info
CREATE EXTERNAL TABLE `ods.mall__sku_info`(
`id` bigint COMMENT 'skuid',
`spu_id` bigint COMMENT 'spuid',
`price` decimal(10,0) COMMENT '价格',
`sku_name` string COMMENT 'sku名称',
`sku_desc` string COMMENT '商品规格描述',
`weight` decimal(10,2) COMMENT '重量',
`tm_id` bigint COMMENT '品牌',
`category3_id` bigint COMMENT '三级分类id',
`create_time` bigint COMMENT '创建时间'
) COMMENT '库存单元表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/sku_info/'
tblproperties ("parquet.compression"="snappy")
- spu_info
drop table if exists ods.mall__spu_info
CREATE EXTERNAL TABLE `ods.mall__spu_info`(
`id` bigint COMMENT '商品id',
`spu_name` string COMMENT '商品名称',
`category3_id` bigint COMMENT '三级分类id',
`tm_id` bigint COMMENT '品牌id'
) COMMENT '商品表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/spu_info/'
tblproperties ("parquet.compression"="snappy")
- base_province
drop table if exists ods.mall__base_province
CREATE EXTERNAL TABLE `ods.mall__base_province`(
`id` bigint COMMENT 'id',
`name` string COMMENT '省名称',
`region_id` string COMMENT '大区id',
`area_code` string COMMENT '行政区位码',
`iso_code` string COMMENT '国际编码'
) COMMENT '省份表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_province/'
tblproperties ("parquet.compression"="snappy")
- base_region
drop table if exists ods.mall__base_region
CREATE EXTERNAL TABLE `ods.mall__base_region`(
`id` string COMMENT '大区id',
`region_name` string COMMENT '大区名称'
) COMMENT '地区表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/base_region/'
tblproperties ("parquet.compression"="snappy")
- refund_info
drop table if exists ods.mall__order_refund_info
CREATE EXTERNAL TABLE `ods.mall__order_refund_info`(
`id` bigint COMMENT '编号',
`user_id` bigint COMMENT '用户id',
`order_id` bigint COMMENT '订单编号',
`sku_id` bigint COMMENT 'skuid',
`refund_type` string COMMENT '退款类型',
`refund_num` bigint COMMENT '退货件数',
`refund_amount` decimal(16,2) COMMENT '退款金额',
`refund_reason_type` string COMMENT '原因类型',
`create_time` bigint COMMENT '创建时间'
) COMMENT '退单表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/order_refund_info/'
tblproperties ("parquet.compression"="snappy")
- order_status_log
drop table if exists ods.mall__order_status_log
CREATE EXTERNAL TABLE `ods.mall__order_status_log`(
`id` bigint COMMENT '编号',
`order_id` bigint COMMENT '订单编号',
`order_status` string COMMENT '订单状态',
`operate_time` bigint COMMENT '操作时间'
) COMMENT '订单状态表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/order_status_log/'
tblproperties ("parquet.compression"="snappy")
- payment_info
drop table if exists ods.mall__payment_info
CREATE EXTERNAL TABLE `ods.mall__payment_info`(
`id` bigint COMMENT '编号',
`out_trade_no` string COMMENT '对外业务编号',
`order_id` bigint COMMENT '订单编号',
`user_id` bigint COMMENT '用户编号',
`alipay_trade_no` string COMMENT '支付宝交易流水编号',
`total_amount` decimal(16,2) COMMENT '支付金额',
`subject` string COMMENT '交易内容',
`payment_type` string COMMENT '支付方式',
`payment_time` bigint COMMENT '支付时间'
) COMMENT '支付流水表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/payment_info/'
tblproperties ("parquet.compression"="snappy")
- order_detail
drop table if exists ods.mall__order_detail
CREATE EXTERNAL TABLE `ods.mall__order_detail`(
`id` bigint COMMENT '编号',
`order_id` bigint COMMENT '订单编号',
`user_id` bigint COMMENT '用户id',
`sku_id` bigint COMMENT 'sku_id',
`sku_name` string COMMENT 'sku名称',
`order_price` decimal(10,2) COMMENT '购买价格(下单时sku价格)',
`sku_num` string COMMENT '购买个数',
`create_time` bigint COMMENT '创建时间'
) COMMENT '订单明细表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/order_detail/'
tblproperties ("parquet.compression"="snappy")
- activity_order
drop table if exists ods.mall__activity_order
CREATE EXTERNAL TABLE `ods.mall__activity_order`(
`id` bigint COMMENT '编号',
`activity_id` bigint COMMENT '活动id',
`order_id` bigint COMMENT '订单编号',
`create_time` bigint COMMENT '发生日期'
) COMMENT '活动与订单关联表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/activity_order/'
tblproperties ("parquet.compression"="snappy")
- comment_info
drop table if exists ods.mall__comment_info
CREATE EXTERNAL TABLE `ods.mall__comment_info`(
`id` bigint COMMENT '编号',
`user_id` bigint COMMENT '用户名称',
`sku_id` bigint COMMENT 'skuid',
`spu_id` bigint COMMENT '商品id',
`order_id` bigint COMMENT '订单编号',
`appraise` string COMMENT '评价 1 好评 2 中评 3 差评',
`comment_txt` string COMMENT '评价内容',
`create_time` bigint COMMENT '创建时间'
) COMMENT '商品评论表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/comment_info/'
tblproperties ("parquet.compression"="snappy")
- coupon_use
drop table if exists ods.mall__coupon_use
CREATE EXTERNAL TABLE `ods.mall__coupon_use`(
`id` bigint COMMENT '编号',
`coupon_id` bigint COMMENT '购物券ID',
`user_id` bigint COMMENT '用户ID',
`order_id` bigint COMMENT '订单ID',
`coupon_status` string COMMENT '购物券状态',
`get_time` bigint COMMENT '领券时间',
`using_time` bigint COMMENT '使用时间',
`used_time` bigint COMMENT '过期时间'
) COMMENT '优惠券领用表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/coupon_use/'
tblproperties ("parquet.compression"="snappy")
- user_info
drop table if exists ods.mall__user_info
CREATE EXTERNAL TABLE `ods.mall__user_info`(
`id` bigint COMMENT '编号',
`name` string COMMENT '用户姓名',
`email` string COMMENT '邮箱',
`user_level` string COMMENT '用户级别',
`birthday` bigint COMMENT '用户生日',
`gender` string COMMENT '性别 M男,F女',
`create_time` bigint COMMENT '创建时间',
`operate_time` bigint COMMENT '修改时间'
) COMMENT '用户表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/user_info/'
tblproperties ("parquet.compression"="snappy")
- order_info
drop table if exists ods.mall__order_info
CREATE EXTERNAL TABLE `ods.mall__order_info`(
`id` bigint COMMENT '编号',
`final_total_amount` decimal(16,2) COMMENT '总金额',
`order_status` string COMMENT '订单状态',
`user_id` bigint COMMENT '用户id',
`out_trade_no` string COMMENT '订单交易编号(第三方支付用)',
`create_time` bigint COMMENT '创建时间',
`operate_time` bigint COMMENT '操作时间',
`province_id` int COMMENT '地区',
`benefit_reduce_amount` decimal(16,2) COMMENT '优惠金额',
`original_total_amount` decimal(16,2) COMMENT '原价金额',
`feight_fee` decimal(16,2) COMMENT '运费'
) COMMENT '订单表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/order_info/'
tblproperties ("parquet.compression"="snappy")
- start_log
此为埋点启动日志表
drop table if exists ods.mall__start_log
CREATE EXTERNAL TABLE `ods.mall__start_log`(
`line` string COMMENT '启动日志'
) COMMENT '启动日志表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
location '/warehouse/ods/mall/start_log/'
- event_log
此为埋点事件日志表
drop table if exists ods.mall__event_log
CREATE EXTERNAL TABLE `ods.mall__event_log`(
`line` string COMMENT '事件日志'
) COMMENT '事件日志表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
location '/warehouse/ods/mall/event_log/'
- date_info
此为时间表
drop table if exists ods.mall__date_info
CREATE EXTERNAL TABLE `ods.mall__date_info`(
`date_id` int COMMENT '日',
`week_id` int COMMENT '周',
`week_day` int COMMENT '周的第几天',
`day` int COMMENT '每月的第几天',
`month` int COMMENT '第几月',
`quarter` int COMMENT '第几季度',
`year` int COMMENT '年',
`is_workday` int COMMENT '是否是周末',
`holiday_id` int COMMENT '是否是节假日'
) COMMENT '时间维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ods/mall/date_info/'
tblproperties ("parquet.compression"="snappy")
8.2 mysql数据抽取
- sqoop抽取脚本基础
#!/bin/bash
db_date=${date}
mysql_db_name=${db_name}
mysql_db_addr=${db_addr}
mysql_db_user=${db_user}
mysql_db_password=${db_password}
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
echo "日期:"$db_date
echo "mysql库名:"$mysql_db_name
import_data() {
/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/sqoop import \
--connect jdbc:mysql://$mysql_db_addr:3306/$mysql_db_name?tinyInt1isBit=false \
--username $mysql_db_user \
--password $mysql_db_password \
--target-dir /origin_data/$mysql_db_name/$1/$db_date \
--delete-target-dir \
--num-mappers 1 \
--null-string '' \
--null-non-string '\\n' \
--fields-terminated-by "\t" \
--query "$2"' and $CONDITIONS;' \
--as-parquetfile
}
- DolphinScheduler全局参数
date | 不传为昨天 |
---|---|
db_name | 数据库名字 |
db_addr | 数据库IP地址 |
db_user | 数据库用户 |
db_password | 数据库密码 |
元数据中数据开始日期为2020-03-15
如下导入数据代码片段,拼接上述的基础片段执行
- 全量表代码片段
import_data "base_dic" "select
dic_code,
dic_name,
parent_code,
create_time,
operate_time
from base_dic
where 1=1"
import_data "base_trademark" "select
tm_id,
tm_name
from base_trademark
where 1=1"
import_data "base_category3" "select
id,
name,
category2_id
from base_category3 where 1=1"
import_data "base_category2" "select
id,
name,
category1_id
from base_category2 where 1=1"
import_data "base_category1" "select
id,
name
from base_category1 where 1=1"
import_data "activity_rule" "select
id,
activity_id,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from activity_rule
where 1=1"
import_data "activity_info" "select
id,
activity_name,
activity_type,
start_time,
end_time,
create_time
from activity_info
where 1=1"
import_data "activity_sku" "select
id,
activity_id,
sku_id,
create_time
FROM
activity_sku
where 1=1"
import_data "cart_info" "select
id,
user_id,
sku_id,
cart_price,
sku_num,
sku_name,
create_time,
operate_time,
is_ordered,
order_time
from cart_info
where 1=1"
import_data "favor_info" "select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from favor_info
where 1=1"
import_data "coupon_info" "select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
spu_id,
tm_id,
category3_id,
limit_num,
operate_time,
expire_time
from coupon_info
where 1=1"
import_data "sku_info" "select
id,
spu_id,
price,
sku_name,
sku_desc,
weight,
tm_id,
category3_id,
create_time
from sku_info where 1=1"
import_data "spu_info" "select
id,
spu_name,
category3_id,
tm_id
from spu_info
where 1=1"
- 特殊表代码片段
import_data "base_province" "select
id,
name,
region_id,
area_code,
iso_code
from base_province
where 1=1"
import_data "base_region" "select
id,
region_name
from base_region
where 1=1"
import_data "date_info" "select
date_id,
week_id,
week_day,
day,
month,
quarter,
year,
is_workday,
holiday_id
from date_info
where 1=1"
- 增量表代码片段
import_data "order_refund_info" "select
id,
user_id,
order_id,
sku_id,
refund_type,
refund_num,
refund_amount,
refund_reason_type,
create_time
from order_refund_info
where
date_format(create_time,'%Y-%m-%d')='$db_date'"
import_data "order_status_log" "select
id,
order_id,
order_status,
operate_time
from order_status_log
where
date_format(operate_time,'%Y-%m-%d')='$db_date'"
import_data "payment_info" "select
id,
out_trade_no,
order_id,
user_id,
alipay_trade_no,
total_amount,
subject,
payment_type,
payment_time
from payment_info
where
DATE_FORMAT(payment_time,'%Y-%m-%d')='$db_date'"
import_data "order_detail" "select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
od.sku_name,
od.order_price,
od.sku_num,
od.create_time
from order_detail od
join order_info oi
on od.order_id=oi.id
where
DATE_FORMAT(od.create_time,'%Y-%m-%d')='$db_date'"
import_data "activity_order" "select
id,
activity_id,
order_id,
create_time
from activity_order
where
date_format(create_time,'%Y-%m-%d')='$db_date'"
import_data "comment_info" "select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
comment_txt,
create_time
from comment_info
where date_format(create_time,'%Y-%m-%d')='$db_date'"
- 增量及变化表代码片段
import_data "coupon_use" "select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time
from coupon_use
where (date_format(get_time,'%Y-%m-%d')='$db_date'
or date_format(using_time,'%Y-%m-%d')='$db_date'
or date_format(used_time,'%Y-%m-%d')='$db_date')"
import_data "user_info" "select
id,
name,
birthday,
gender,
email,
user_level,
create_time,
operate_time
from user_info
where (DATE_FORMAT(create_time,'%Y-%m-%d')='$db_date'
or DATE_FORMAT(operate_time,'%Y-%m-%d')='$db_date')"
import_data "order_info" "select
id,
final_total_amount,
order_status,
user_id,
out_trade_no,
create_time,
operate_time,
province_id,
benefit_reduce_amount,
original_total_amount,
feight_fee
from order_info
where (date_format(create_time,'%Y-%m-%d')='$db_date'
or date_format(operate_time,'%Y-%m-%d')='$db_date')"
8.3 ods层数据加载
- 脚本修改$table_name即可
注意2张埋点日志表的数据导出目录
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ods
table_name=base_dic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
load data inpath '/origin_data/$APP1/$table_name/$db_date' OVERWRITE into table $hive_table_name partition(dt='$db_date');
"
$hive -e "$sql"
9 dwd层构建
9.1 dwd层构建(启动-事件日志)
9.1.1 启动日志表
- 建表
drop table if exists dwd.mall__start_log
CREATE EXTERNAL TABLE `dwd.mall__start_log`(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`entry` string COMMENT '入口: push=1,widget=2,icon=3,notification=4,lockscreen_widget=5',
`open_ad_type` string COMMENT '开屏广告类型: 开屏原生广告=1, 开屏插屏广告=2',
`action` string COMMENT '状态:成功=1 失败=2',
`loading_time` string COMMENT '加载时长',
`detail` string COMMENT '失败码',
`extend1` string COMMENT '失败的 message'
) COMMENT '启动日志表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/start_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=start_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
get_json_object(line,'$.mid') mid_id,
get_json_object(line,'$.uid') user_id,
get_json_object(line,'$.vc') version_code,
get_json_object(line,'$.vn') version_name,
get_json_object(line,'$.l') lang,
get_json_object(line,'$.sr') source,
get_json_object(line,'$.os') os,
get_json_object(line,'$.ar') area,
get_json_object(line,'$.md') model,
get_json_object(line,'$.ba') brand,
get_json_object(line,'$.sv') sdk_version,
get_json_object(line,'$.g') gmail,
get_json_object(line,'$.hw') height_width,
get_json_object(line,'$.t') app_time,
get_json_object(line,'$.nw') network,
get_json_object(line,'$.ln') lng,
get_json_object(line,'$.la') lat,
get_json_object(line,'$.entry') entry,
get_json_object(line,'$.open_ad_type') open_ad_type,
get_json_object(line,'$.action') action,
get_json_object(line,'$.loading_time') loading_time,
get_json_object(line,'$.detail') detail,
get_json_object(line,'$.extend1') extend1
from $hive_origin_table_name
where dt='$db_date';
"
$hive -e "$sql"
9.1.2 事件日志表
- 建表
drop table if exists dwd.mall__event_log
CREATE EXTERNAL TABLE `dwd.mall__event_log`(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`event_name` string COMMENT '事件名称',
`event_json` string COMMENT '事件详情',
`server_time` string COMMENT '服务器时间'
) COMMENT '事件日志表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/event_log/'
tblproperties ("parquet.compression"="snappy")
9.2.1 制作 UDF UDTF
- udf
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDF;
import org.json.JSONException;
import org.json.JSONObject;
public class BaseFieldUDF extends UDF {
public String evaluate(String line, String key) throws JSONException {
String[] log = line.split("\\|");
if (log.length != 2 || StringUtils.isBlank(log[1])) {
return "";
}
JSONObject baseJson = new JSONObject(log[1].trim());
String result = "";
// 获取服务器时间
if ("st".equals(key)) {
result = log[0].trim();
} else if ("et".equals(key)) {
// 获取事件数组
if (baseJson.has("et")) {
result = baseJson.getString("et");
}
} else {
JSONObject cm = baseJson.getJSONObject("cm");
// 获取 key 对应公共字段的 value
if (cm.has(key)) {
result = cm.getString(key);
}
}
return result;
}
public static void main(String[] args) throws JSONException {
String line = " 1588319303710|{\n" +
" \"cm\":{\n" +
" \"ln\":\"-51.5\",\"sv\":\"V2.0.7\",\"os\":\"8.0.8\",\"g\":\"L1470998@gmail.com\",\"mid\":\"13\",\n" +
" \"nw\":\"4G\",\"l\":\"en\",\"vc\":\"7\",\"hw\":\"640*960\",\"ar\":\"MX\",\"uid\":\"13\",\"t\":\"1588291826938\",\n" +
" \"la\":\"-38.2\",\"md\":\"Huawei-14\",\"vn\":\"1.3.6\",\"ba\":\"Huawei\",\"sr\":\"Y\"\n" +
" },\n" +
" \"ap\":\"app\",\n" +
" \"et\":[{\n" +
" \"ett\":\"1588228193191\",\"en\":\"ad\",\"kv\":{\"activityId\":\"1\",\"displayMills\":\"113201\",\"entry\":\"3\",\"action\":\"5\",\"contentType\":\"0\"}\n" +
" },{\n" +
" \"ett\":\"1588300304713\",\"en\":\"notification\",\"kv\":{\"ap_time\":\"1588277440794\",\"action\":\"2\",\"type\":\"3\",\"content\":\"\"}\n" +
" },{\n" +
" \"ett\":\"1588249203743\",\"en\":\"active_background\",\"kv\":{\"active_source\":\"3\"}\n" +
" },{\n" +
" \"ett\":\"1588225856101\",\"en\":\"comment\",\"kv\":{\"p_comment_id\":0,\"addtime\":\"1588263895040\",\"praise_count\":231,\"other_id\":5,\"comment_id\":5,\"reply_count\":62,\"userid\":7,\"content\":\"骸汞\"}\n" +
" },{\n" +
" \"ett\":\"1588254200122\",\"en\":\"favorites\",\"kv\":{\"course_id\":5,\"id\":0,\"add_time\":\"1588264138625\",\"userid\":0}\n" +
" },{\n" +
" \"ett\":\"1588281152824\",\"en\":\"praise\",\"kv\":{\"target_id\":4,\"id\":3,\"type\":3,\"add_time\":\"1588307696417\",\"userid\":8}\n" +
" }]\n" +
" }";
String s = new BaseFieldUDF().evaluate(line, "mid");
String ss = new BaseFieldUDF().evaluate(line, "st");
String sss = new BaseFieldUDF().evaluate(line, "et");
System.out.println(s);
System.out.println(ss);
System.out.println(sss);
}
}
结果:
13
1588319303710
[{"ett":"1588228193191","en":"ad","kv":{"activityId":"1","displayMills":"113201","entry":"3","action":"5","contentType":"0"}},{"ett":"1588300304713","en":"notification","kv":{"ap_time":"1588277440794","action":"2","type":"3","content":""}},{"ett":"1588249203743","en":"active_background","kv":{"active_source":"3"}},{"ett":"1588225856101","en":"comment","kv":{"p_comment_id":0,"addtime":"1588263895040","praise_count":231,"other_id":5,"comment_id":5,"reply_count":62,"userid":7,"content":"骸汞"}},{"ett":"1588254200122","en":"favorites","kv":{"course_id":5,"id":0,"add_time":"1588264138625","userid":0}},{"ett":"1588281152824","en":"praise","kv":{"target_id":4,"id":3,"type":3,"add_time":"1588307696417","userid":8}}]
- udtf
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import org.json.JSONException;
import java.util.ArrayList;
public class EventJsonUDTF extends GenericUDTF {
//该方法中,我们将指定输出参数的名称和参数类型:
public StructObjectInspector initialize(StructObjectInspector argOIs) throws UDFArgumentException {
ArrayList<String> fieldNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("event_name");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("event_json");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,
fieldOIs);
}
//输入 1 条记录,输出若干条结果
@Override
public void process(Object[] objects) throws HiveException {
// 获取传入的 et
String input = objects[0].toString();
// 如果传进来的数据为空,直接返回过滤掉该数据
if (StringUtils.isBlank(input)) {
return;
} else {
try {
// 获取一共有几个事件(ad/facoriters)
JSONArray ja = new JSONArray(input);
if (ja == null)
return;
// 循环遍历每一个事件
for (int i = 0; i < ja.length(); i++) {
String[] result = new String[2];
try {
// 取出每个的事件名称(ad/facoriters)
result[0] = ja.getJSONObject(i).getString("en");
// 取出每一个事件整体
result[1] = ja.getString(i);
} catch (JSONException e) {
continue;
}
// 将结果返回
forward(result);
}
} catch (JSONException e) {
e.printStackTrace();
}
}
}
//当没有记录处理的时候该方法会被调用,用来清理代码或者产生额外的输出
@Override
public void close() throws HiveException {
}
}
9.1.2.2 直接永久使用UDF
- 上传UDF资源
将hive-function-1.0-SNAPSHOT包传到HDFS 的/user/hive/jars下
hadoop dfs -mkdir /user/hive/jars
hadoop dfs -put hive-function-1.0-SNAPSHOT.jar /user/hive/jars/hive-function-1.0-SNAPSHOT.jar
在hive中创建永久UDF
create function base_analizer as 'com.heaton.bigdata.udf.BaseFieldUDF' using jar 'hdfs://cdh01.cm:8020/user/hive/jars/hive-function-1.0-SNAPSHOT.jar';
create function flat_analizer as 'com.heaton.bigdata.udtf.EventJsonUDTF' using jar 'hdfs://cdh01.cm:8020/user/hive/jars/hive-function-1.0-SNAPSHOT.jar';
9.1.2.3 Dolphin使用方式UDF
在DAG图创建SQL工具中选择对应UDF函数即可使用,但是目前Dolphin1.2.0中关联函数操作保存无效。
大家可以使用UDF管理功能将JAR传入到HDFS上,这样通过脚本加入临时函数,也可以很好的完成功能。
临时函数语句:
create temporary function base_analizer as 'com.heaton.bigdata.udf.BaseFieldUDF' using jar 'hdfs://cdh01.cm:8020/dolphinscheduler/dolphinscheduler/udfs/hive-function-1.0-SNAPSHOT.jar'; create temporary function flat_analizer as 'com.heaton.bigdata.udtf.EventJsonUDTF' using jar 'hdfs://cdh01.cm:8020/dolphinscheduler/dolphinscheduler/udfs/hive-function-1.0-SNAPSHOT.jar';
9.2.4 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=event_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
base_analizer(line,'mid') as mid_id,
base_analizer(line,'uid') as user_id,
base_analizer(line,'vc') as version_code,
base_analizer(line,'vn') as version_name,
base_analizer(line,'l') as lang,
base_analizer(line,'sr') as source,
base_analizer(line,'os') as os,
base_analizer(line,'ar') as area,
base_analizer(line,'md') as model,
base_analizer(line,'ba') as brand,
base_analizer(line,'sv') as sdk_version,
base_analizer(line,'g') as gmail,
base_analizer(line,'hw') as height_width,
base_analizer(line,'t') as app_time,
base_analizer(line,'nw') as network,
base_analizer(line,'ln') as lng,
base_analizer(line,'la') as lat,
event_name,
event_json,
base_analizer(line,'st') as server_time
from $hive_origin_table_name lateral view flat_analizer(base_analizer(line,'et')) tmp_flat as event_name,event_json
where dt='$db_date' and base_analizer(line,'et')<>'';
"
$hive -e "$sql"
9.1.3 商品点击表
- 建表
drop table if exists dwd.mall__display_log
CREATE EXTERNAL TABLE `dwd.mall__display_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`goodsid` string,
`place` string,
`extend1` string,
`category` string,
`server_time` string
) COMMENT '商品点击表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/display_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=display_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.goodsid') goodsid,
get_json_object(event_json,'$.kv.place') place,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.category') category,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='display';
"
$hive -e "$sql"
9.1.4 商品列表表
- 建表
drop table if exists dwd.mall__loading_log
CREATE EXTERNAL TABLE `dwd.mall__loading_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`loading_time` string,
`loading_way` string,
`extend1` string,
`extend2` string,
`type` string,
`type1` string,
`server_time` string
) COMMENT '商品列表表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/loading_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=loading_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.loading_time') loading_time,
get_json_object(event_json,'$.kv.loading_way') loading_way,
get_json_object(event_json,'$.kv.extend1') extend1,
get_json_object(event_json,'$.kv.extend2') extend2,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.type1') type1,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='loading';
"
$hive -e "$sql"
9.1.5 广告表
- 建表
drop table if exists dwd.mall__ad_log
CREATE EXTERNAL TABLE `dwd.mall__ad_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`entry` string,
`action` string,
`contentType` string,
`displayMills` string,
`itemId` string,
`activityId` string,
`server_time` string
) COMMENT '广告表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/ad_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=ad_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.entry') entry,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.contentType') contentType,
get_json_object(event_json,'$.kv.displayMills') displayMills,
get_json_object(event_json,'$.kv.itemId') itemId,
get_json_object(event_json,'$.kv.activityId') activityId,
server_time
from dwd.mall__event_log
where dt='db_date' and event_name='ad';
"
$hive -e "$sql"
9.1.6 消息通知表
- 建表
drop table if exists dwd.mall__notification_log
CREATE EXTERNAL TABLE `dwd.mall__notification_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`action` string,
`noti_type` string,
`ap_time` string,
`content` string,
`server_time` string
) COMMENT '消息通知表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/notification_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=notification_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.action') action,
get_json_object(event_json,'$.kv.noti_type') noti_type,
get_json_object(event_json,'$.kv.ap_time') ap_time,
get_json_object(event_json,'$.kv.content') content,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='notification';
"
$hive -e "$sql"
9.1.7 用户后台活跃表
- 建表
drop table if exists dwd.mall__active_background_log
CREATE EXTERNAL TABLE `dwd.mall__active_background_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`active_source` string,
`server_time` string
) COMMENT '用户后台活跃表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/active_background_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=active_background_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.active_source') active_source,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='active_background';
"
$hive -e "$sql"
9.1.8 评论表
- 建表
drop table if exists dwd.mall__comment_log
CREATE EXTERNAL TABLE `dwd.mall__comment_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`comment_id` int,
`userid` int,
`p_comment_id` int,
`content` string,
`addtime` string,
`other_id` int,
`praise_count` int,
`reply_count` int,
`server_time` string
) COMMENT '评论表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/comment_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=comment_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.comment_id') comment_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.p_comment_id') p_comment_id,
get_json_object(event_json,'$.kv.content') content,
get_json_object(event_json,'$.kv.addtime') addtime,
get_json_object(event_json,'$.kv.other_id') other_id,
get_json_object(event_json,'$.kv.praise_count') praise_count,
get_json_object(event_json,'$.kv.reply_count') reply_count,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='comment';
"
$hive -e "$sql"
9.1.9 收藏表
- 建表
drop table if exists dwd.mall__favorites_log
CREATE EXTERNAL TABLE `dwd.mall__favorites_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` int,
`course_id` int,
`userid` int,
`add_time` string,
`server_time` string
) COMMENT '收藏表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/favorites_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=favorites_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.course_id') course_id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='favorites';
"
$hive -e "$sql"
9.1.10 点赞表
- 建表
drop table if exists dwd.mall__praise_log
CREATE EXTERNAL TABLE `dwd.mall__praise_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`id` string,
`userid` string,
`target_id` string,
`type` string,
`add_time` string,
`server_time` string
) COMMENT '点赞表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/praise_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=praise_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.id') id,
get_json_object(event_json,'$.kv.userid') userid,
get_json_object(event_json,'$.kv.target_id') target_id,
get_json_object(event_json,'$.kv.type') type,
get_json_object(event_json,'$.kv.add_time') add_time,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='praise';
"
$hive -e "$sql"
9.1.11 错误日志表
- 建表
drop table if exists dwd.mall__error_log
CREATE EXTERNAL TABLE `dwd.mall__error_log`(
`mid_id` string,
`user_id` string,
`version_code` string,
`version_name` string,
`lang` string,
`source` string,
`os` string,
`area` string,
`model` string,
`brand` string,
`sdk_version` string,
`gmail` string,
`height_width` string,
`app_time` string,
`network` string,
`lng` string,
`lat` string,
`errorBrief` string,
`errorDetail` string,
`server_time` string
) COMMENT '错误日志表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/error_log/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
APP3=ods
table_name=error_log
hive_table_name=$APP2.mall__$table_name
hive_origin_table_name=$APP3.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
user_id,
version_code,
version_name,
lang,
source,
os,
area,
model,
brand,
sdk_version,
gmail,
height_width,
app_time,
network,
lng,
lat,
get_json_object(event_json,'$.kv.errorBrief') errorBrief,
get_json_object(event_json,'$.kv.errorDetail') errorDetail,
server_time
from dwd.mall__event_log
where dt='$db_date' and event_name='error';
"
$hive -e "$sql"
9.2 dwd层构建(业务库)
此层在构建之初,增量表需要动态分区来划分时间,将数据放入指定分区
事实/维度 | 时间 | 用户 | 地区 | 商品 | 优惠卷 | 活动 | 编码 | 度量 |
---|---|---|---|---|---|---|---|---|
订单 | √ | √ | √ | √ | 件数/金额 | |||
订单详情 | √ | √ | √ | 件数/金额 | ||||
支付 | √ | √ | 次数/金额 | |||||
加入购物车 | √ | √ | √ | 件数/金额 | ||||
收藏 | √ | √ | √ | 个数 | ||||
评价 | √ | √ | √ | 个数 | ||||
退款 | √ | √ | √ | 件数/金额 | ||||
优惠卷领用 | √ | √ | √ | 个数 |
9.2.1 商品维度表(全量)
- 建表
drop table if exists dwd.mall__dim_sku_info
CREATE EXTERNAL TABLE `dwd.mall__dim_sku_info`(
`id` string COMMENT '商品 id',
`spu_id` string COMMENT 'spuid',
`price` double COMMENT '商品价格',
`sku_name` string COMMENT '商品名称',
`sku_desc` string COMMENT '商品描述',
`weight` double COMMENT '重量',
`tm_id` string COMMENT '品牌 id',
`tm_name` string COMMENT '品牌名称',
`category3_id` string COMMENT '三级分类 id',
`category2_id` string COMMENT '二级分类 id',
`category1_id` string COMMENT '一级分类 id',
`category3_name` string COMMENT '三级分类名称',
`category2_name` string COMMENT '二级分类名称',
`category1_name` string COMMENT '一级分类名称',
`spu_name` string COMMENT 'spu 名称',
`create_time` string COMMENT '创建时间'
) COMMENT '商品维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_sku_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_sku_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
sku.id,
sku.spu_id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.tm_id,
ob.tm_name,
sku.category3_id,
c2.id category2_id,
c1.id category1_id,
c3.name category3_name,
c2.name category2_name,
c1.name category1_name,
spu.spu_name,
from_unixtime(cast(sku.create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time
from
(
select * from ods.mall__sku_info where dt='$db_date'
)sku
join
(
select * from ods.mall__base_trademark where dt='$db_date'
)ob on sku.tm_id=ob.tm_id
join
(
select * from ods.mall__spu_info where dt='$db_date'
)spu on spu.id = sku.spu_id
join
(
select * from ods.mall__base_category3 where dt='$db_date'
)c3 on sku.category3_id=c3.id
join
(
select * from ods.mall__base_category2 where dt='$db_date'
)c2 on c3.category2_id=c2.id
join
(
select * from ods.mall__base_category1 where dt='$db_date'
)c1 on c2.category1_id=c1.id;
"
$hive -e "$sql"
9.2.2 优惠券信息维度表(全量)
- 建表
drop table if exists dwd.mall__dim_coupon_info
CREATE EXTERNAL TABLE `dwd.mall__dim_coupon_info`(
`id` string COMMENT '购物券编号',
`coupon_name` string COMMENT '购物券名称',
`coupon_type` string COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` string COMMENT '满额数',
`condition_num` string COMMENT '满件数',
`activity_id` string COMMENT '活动编号',
`benefit_amount` string COMMENT '减金额',
`benefit_discount` string COMMENT '折扣',
`create_time` string COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1、商品 2、品类 3、品牌',
`spu_id` string COMMENT '商品 id',
`tm_id` string COMMENT '品牌 id',
`category3_id` string COMMENT '品类 id',
`limit_num` string COMMENT '最多领用次数',
`operate_time` string COMMENT '修改时间',
`expire_time` string COMMENT '过期时间'
) COMMENT '优惠券信息维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_coupon_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_coupon_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
range_type,
spu_id,
tm_id,
category3_id,
limit_num,
from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
from_unixtime(cast(expire_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') expire_time
from ods.mall__coupon_info
where dt='$db_date';
"
$hive -e "$sql"
9.2.3 活动维度表(全量)
- 建表
drop table if exists dwd.mall__dim_activity_info
CREATE EXTERNAL TABLE `dwd.mall__dim_activity_info`(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`condition_amount` string COMMENT '满减金额',
`condition_num` string COMMENT '满减件数',
`benefit_amount` string COMMENT '优惠金额',
`benefit_discount` string COMMENT '优惠折扣',
`benefit_level` string COMMENT '优惠级别',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间'
) COMMENT '活动维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_activity_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_activity_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
info.id,
info.activity_name,
info.activity_type,
rule.condition_amount,
rule.condition_num,
rule.benefit_amount,
rule.benefit_discount,
rule.benefit_level,
from_unixtime(cast(info.start_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') start_time,
from_unixtime(cast(info.end_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') end_time,
from_unixtime(cast(info.create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time
from
(
select * from ods.mall__activity_info where dt='$db_date'
)info
left join
(
select * from ods.mall__activity_rule where dt='$db_date'
)rule on info.id = rule.activity_id;
"
$hive -e "$sql"
9.2.4 地区维度表(特殊)
- 建表
drop table if exists dwd.mall__dim_base_province
CREATE EXTERNAL TABLE `dwd.mall__dim_base_province`(
`id` string COMMENT 'id',
`province_name` string COMMENT '省市名称',
`area_code` string COMMENT '地区编码',
`iso_code` string COMMENT 'ISO 编码',
`region_id` string COMMENT '地区 id',
`region_name` string COMMENT '地区名称'
) COMMENT '地区维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_base_province/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_base_province
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.region_id,
br.region_name
from ods.mall__base_province bp
join ods.mall__base_region br
on bp.region_id=br.id;
"
$hive -e "$sql"
9.2.5 时间维度表(特殊)
- 建表
drop table if exists dwd.mall__dim_date_info
CREATE EXTERNAL TABLE `dwd.mall__dim_date_info`(
`date_id` string COMMENT '日',
`week_id` int COMMENT '周',
`week_day` int COMMENT '周的第几天',
`day` int COMMENT '每月的第几天',
`month` int COMMENT '第几月',
`quarter` int COMMENT '第几季度',
`year` int COMMENT '年',
`is_workday` int COMMENT '是否是周末',
`holiday_id` int COMMENT '是否是节假日'
) COMMENT '时间维度表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_date_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_date_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
date_id,
week_id,
week_day,
day,
month,
quarter,
year,
is_workday,
holiday_id
from ods.mall__date_info
"
$hive -e "$sql"
9.2.6 用户维度表(新增及变化-缓慢变化维-拉链表)
9.2.6.1 拉链表介绍
拉链表,记录每条信息的生命周期,一旦一条记录的生命周期结束,就重新开始一条新的记录,并把当前日期放入生效开始日期。
如果当前信息至今有效,在生效结束日期中填入一个极大值(如:9999-99-99),下表为张三的手机号变化例子
用户ID | 姓名 | 手机号 | 开始日期 | 结束日期 |
---|---|---|---|---|
1 | 张三 | 134XXXX5050 | 2019-01-01 | 2019-01-02 |
1 | 张三 | 139XXXX3232 | 2019-01-03 | 2020-01-01 |
1 | 张三 | 137XXXX7676 | 2020-01-02 | 9999-99-99 |
- 适合场景:数据会发生变化,但是大部分不变(即:缓慢变化维)
比如:用户信息发生变化,但是每天变化比例不高,按照每日全量,则效率低
- 如何使用拉链表:通过-->生效开始日期<=某个日期 且 生效结束日期>=某个日期,能够得到某个时间点的数据全量切片。
- 拉链表形成过程
- 制作流程
用户当日全部数据和MySQL中每天变化的数据拼接在一起,形成一个<新的临时拉链表。
用临时拉链表覆盖旧的拉链表数据。
从而解决Hive中数据不能更新的问题
9.2.6.2 用户维度表
用户表中的数据每日既有可能新增,也有可能修改,属于缓慢变化维度,此处采用拉链表存储用户维度数据。
- 建表
drop table if exists dwd.mall__dim_user_info_his
CREATE EXTERNAL TABLE `dwd.mall__dim_user_info_his`(
`id` string COMMENT '用户 id',
`name` string COMMENT '姓名',
`birthday` string COMMENT '生日',
`gender` string COMMENT '性别',
`email` string COMMENT '邮箱',
`user_level` string COMMENT '用户等级',
`create_time` string COMMENT '创建时间',
`operate_time` string COMMENT '操作时间',
`start_date` string COMMENT '有效开始日期',
`end_date` string COMMENT '有效结束日期'
) COMMENT '用户拉链表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_user_info_his/'
tblproperties ("parquet.compression"="snappy")
- 临时表建表(结构与主表相同)
drop table if exists dwd.mall__dim_user_info_his_tmp
CREATE EXTERNAL TABLE `dwd.mall__dim_user_info_his_tmp`(
`id` string COMMENT '用户 id',
`name` string COMMENT '姓名',
`birthday` string COMMENT '生日',
`gender` string COMMENT '性别',
`email` string COMMENT '邮箱',
`user_level` string COMMENT '用户等级',
`create_time` string COMMENT '创建时间',
`operate_time` string COMMENT '操作时间',
`start_date` string COMMENT '有效开始日期',
`end_date` string COMMENT '有效结束日期'
) COMMENT '用户拉链表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/dim_user_info_his_tmp/'
tblproperties ("parquet.compression"="snappy")
- 首先(主表)数据初始化,只做一次
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_user_info_his
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
id,
name,
from_unixtime(cast(birthday/1000 as bigint),'yyyy-MM-dd HH:mm:ss') birthday,
gender,
email,
user_level,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
'$db_date',
'9999-99-99'
from ods.mall__user_info oi
where oi.dt='$db_date';
"
$hive -e "$sql"
- 临时表数据计算导入(在主表数据之后执行)
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_user_info_his_tmp
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
*
from
( --查询当前时间的所有信息
select
cast(id as string) id,
name,
from_unixtime(cast(birthday/1000 as bigint),'yyyy-MM-dd HH:mm:ss') birthday,
gender,
email,
user_level,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
'$db_date' start_date,
'9999-99-99' end_date
from ods.mall__user_info where dt='$db_date'
union all
--查询当前变化了的数据,修改日期
select
uh.id,
uh.name,
from_unixtime(cast(uh.birthday/1000 as bigint),'yyyy-MM-dd HH:mm:ss') birthday,
uh.gender,
uh.email,
uh.user_level,
from_unixtime(cast(uh.create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(uh.operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
uh.start_date,
if(ui.id is not null and uh.end_date='9999-99-99', date_add(ui.dt,-1),uh.end_date) end_date
from dwd.mall__dim_user_info_his uh left join
(
--查询当前时间的所有信息
select
cast(id as string) id,
name,
from_unixtime(cast(birthday/1000 as bigint),'yyyy-MM-dd HH:mm:ss') birthday,
gender,
email,
user_level,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
dt
from ods.mall__user_info
where dt='$db_date'
) ui on uh.id=ui.id
)his
order by his.id, start_date;
"
$hive -e "$sql"
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=dim_user_info_his
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select * from dwd.mall__dim_user_info_his_tmp;
"
$hive -e "$sql"
9.2.7 订单详情事实表(事务型快照事实表-新增)
- 建表
drop table if exists dwd.mall__fact_order_detail
CREATE EXTERNAL TABLE `dwd.mall__fact_order_detail`(
`id` bigint COMMENT '编号',
`order_id` bigint COMMENT '订单编号',
`user_id` bigint COMMENT '用户id',
`sku_id` bigint COMMENT 'sku_id',
`sku_name` string COMMENT 'sku名称',
`order_price` decimal(10,2) COMMENT '购买价格(下单时sku价格)',
`sku_num` string COMMENT '购买个数',
`create_time` bigint COMMENT '创建时间',
`province_id` string COMMENT '省份ID',
`total_amount` decimal(20,2) COMMENT '订单总金额'
) COMMENT '订单明细表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_order_detail/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_order_detail
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
od.id,
od.order_id,
od.user_id,
od.sku_id,
od.sku_name,
od.order_price,
od.sku_num,
od.create_time,
oi.province_id,
od.order_price*od.sku_num
from (select * from ods.mall__order_detail where dt='$db_date' ) od
join (select * from ods.mall__order_info where dt='$db_date' ) oi
on od.order_id=oi.id;
"
$hive -e "$sql"
9.2.7 支付事实表(事务型快照事实表-新增)
- 建表
drop table if exists dwd.mall__fact_payment_info
CREATE EXTERNAL TABLE `dwd.mall__fact_payment_info`(
`id` string COMMENT '',
`out_trade_no` string COMMENT '对外业务编号',
`order_id` string COMMENT '订单编号',
`user_id` string COMMENT '用户编号',
`alipay_trade_no` string COMMENT '支付宝交易流水编号',
`payment_amount` decimal(16,2) COMMENT '支付金额',
`subject` string COMMENT '交易内容',
`payment_type` string COMMENT '支付类型',
`payment_time` string COMMENT '支付时间',
`province_id` string COMMENT '省份 ID'
) COMMENT '支付事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_payment_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_payment_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
pi.alipay_trade_no,
pi.total_amount,
pi.subject,
pi.payment_type,
from_unixtime(cast(pi.payment_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') payment_time,
oi.province_id
from
(
select * from ods.mall__payment_info where dt='$db_date'
)pi
join
(
select id, province_id from ods.mall__order_info where dt='$db_date'
)oi
on pi.order_id = oi.id;
"
$hive -e "$sql"
9.2.8 退款事实表(事务型快照事实表-新增)
- 建表
drop table if exists dwd.mall__fact_order_refund_info
CREATE EXTERNAL TABLE `dwd.mall__fact_order_refund_info`(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 ID',
`order_id` string COMMENT '订单 ID',
`sku_id` string COMMENT '商品 ID',
`refund_type` string COMMENT '退款类型',
`refund_num` bigint COMMENT '退款件数',
`refund_amount` decimal(16,2) COMMENT '退款金额',
`refund_reason_type` string COMMENT '退款原因类型',
`create_time` string COMMENT '退款时间'
) COMMENT '退款事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_order_refund_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_order_refund_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
id,
user_id,
order_id,
sku_id,
refund_type,
refund_num,
refund_amount,
refund_reason_type,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time
from ods.mall__order_refund_info
where dt='$db_date';
"
$hive -e "$sql"
9.2.9 评价事实表(事务型快照事实表-新增)
- 建表
drop table if exists dwd.mall__fact_comment_info
CREATE EXTERNAL TABLE `dwd.mall__fact_comment_info`(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 ID',
`sku_id` string COMMENT '商品 sku',
`spu_id` string COMMENT '商品 spu',
`order_id` string COMMENT '订单 ID',
`appraise` string COMMENT '评价',
`create_time` string COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_comment_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_comment_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time
from ods.mall__comment_info
where dt='$db_date';
"
$hive -e "$sql"
9.2.10 加购事实表(周期型快照事实表-全量)
- 建表
drop table if exists dwd.mall__fact_cart_info
CREATE EXTERNAL TABLE `dwd.mall__fact_cart_info`(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 id',
`sku_id` string COMMENT 'skuid',
`cart_price` string COMMENT '放入购物车时价格',
`sku_num` string COMMENT '数量',
`sku_name` string COMMENT 'sku 名称 (冗余)',
`create_time` string COMMENT '创建时间',
`operate_time` string COMMENT '修改时间',
`is_ordered` string COMMENT '是否已经下单。1 为已下单;0 为未下单',
`order_time` string COMMENT '下单时间'
) COMMENT '加购事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_cart_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_cart_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
id,
user_id,
sku_id,
cart_price,
sku_num,
sku_name,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') operate_time,
is_ordered,
from_unixtime(cast(order_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') order_time
from ods.mall__cart_info
where dt='$db_date';
"
$hive -e "$sql"
9.2.11 收藏事实表(周期型快照事实表-全量)
- 建表
drop table if exists dwd.mall__fact_favor_info
CREATE EXTERNAL TABLE `dwd.mall__fact_favor_info`(
`id` string COMMENT '编号',
`user_id` string COMMENT '用户 id',
`sku_id` string COMMENT 'skuid',
`spu_id` string COMMENT 'spuid',
`is_cancel` string COMMENT '是否取消',
`create_time` string COMMENT '收藏时间',
`cancel_time` string COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_favor_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_favor_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') create_time,
from_unixtime(cast(cancel_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss') cancel_time
from ods.mall__favor_info
where dt='$db_date';
"
$hive -e "$sql"
9.2.12 优惠券领用事实表(累积型快照事实表-新增及变化)
- 建表
drop table if exists dwd.mall__fact_coupon_use
CREATE EXTERNAL TABLE `dwd.mall__fact_coupon_use`(
`` string COMMENT '编号',
`coupon_id` string COMMENT '优惠券 ID',
`user_id` string COMMENT 'userid',
`order_id` string COMMENT '订单 id',
`coupon_status` string COMMENT '优惠券状态',
`get_time` string COMMENT '领取时间',
`using_time` string COMMENT '使用时间(下单)',
`used_time` string COMMENT '使用时间(支付)'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_coupon_use/'
tblproperties ("parquet.compression"="snappy")
dt 是按照优惠卷领用时间 get_time 做为分区。
get_time 为领用时间,领用过后数据就需要存在,然后在下单和支付的时候叠加更新时间
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_coupon_use
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
if(new.id is null,old.id,new.id) id,
if(new.coupon_id is null,old.coupon_id,new.coupon_id) coupon_id,
if(new.user_id is null,old.user_id,new.user_id) user_id,
if(new.order_id is null,old.order_id,new.order_id) order_id,
if(new.coupon_status is null,old.coupon_status,new.coupon_status) coupon_status,
from_unixtime(cast(if(new.get_time is null,old.get_time,new.get_time)/1000 as bigint),'yyyy-MM-dd') get_time,
from_unixtime(cast(if(new.using_time is null,old.using_time,new.using_time)/1000 as bigint),'yyyy-MM-dd') using_time,
from_unixtime(cast(if(new.used_time is null,old.used_time,new.used_time)/1000 as bigint),'yyyy-MM-dd'),
from_unixtime(cast(if(new.get_time is null,old.get_time,new.get_time)/1000 as bigint),'yyyy-MM-dd')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time
from dwd.mall__fact_coupon_use
where dt in
(
select
from_unixtime(cast(get_time/1000 as bigint),'yyyy-MM-dd')
from ods.mall__coupon_use
where dt='$db_date'
)
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time
from ods.mall__coupon_use
where dt='$db_date'
)new
on old.id=new.id;
"
$hive -e "$sql"
9.2.13 订单事实表(累积型快照事实表-新增及变化)
- 建表
drop table if exists dwd.mall__fact_order_info
CREATE EXTERNAL TABLE `dwd.mall__fact_order_info`(
`id` string COMMENT '订单编号',
`order_status` string COMMENT '订单状态',
`user_id` string COMMENT '用户 id',
`out_trade_no` string COMMENT '支付流水号',
`create_time` string COMMENT '创建时间(未支付状态)',
`payment_time` string COMMENT '支付时间(已支付状态)',
`cancel_time` string COMMENT '取消时间(已取消状态)',
`finish_time` string COMMENT '完成时间(已完成状态)',
`refund_time` string COMMENT '退款时间(退款中状态)',
`refund_finish_time` string COMMENT '退款完成时间(退款完成状态)',
`province_id` string COMMENT '省份 ID',
`activity_id` string COMMENT '活动 ID',
`original_total_amount` string COMMENT '原价金额',
`benefit_reduce_amount` string COMMENT '优惠金额',
`feight_fee` string COMMENT '运费',
`final_total_amount` decimal(10,2) COMMENT '订单金额'
) COMMENT '订单事实表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwd/mall/fact_order_info/'
tblproperties ("parquet.compression"="snappy")
- 数据导入
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwd
table_name=fact_order_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
if(new.id is null,old.id,new.id),
if(new.order_status is null,old.order_status,new.order_status),
if(new.user_id is null,old.user_id,new.user_id),
if(new.out_trade_no is null,old.out_trade_no,new.out_trade_no),
if(new.tms['1001'] is null,from_unixtime(cast(old.create_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1001']),--1001 对应未支付状态
if(new.tms['1002'] is null,from_unixtime(cast(old.payment_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1002']),
if(new.tms['1003'] is null,from_unixtime(cast(old.cancel_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1003']),
if(new.tms['1004'] is null,from_unixtime(cast(old.finish_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1004']),
if(new.tms['1005'] is null,from_unixtime(cast(old.refund_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1005']),
if(new.tms['1006'] is null,from_unixtime(cast(old.refund_finish_time/1000 as bigint),'yyyy-MM-dd HH:mm:ss'),new.tms['1006']),
if(new.province_id is null,old.province_id,new.province_id),
if(new.activity_id is null,old.activity_id,new.activity_id),
if(new.original_total_amount is null,old.original_total_amount,new.original_total_amount),
if(new.benefit_reduce_amount is null,old.benefit_reduce_amount,new.benefit_reduce_amount),
if(new.feight_fee is null,old.feight_fee,new.feight_fee),
if(new.final_total_amount is null,old.final_total_amount,new.final_total_amount)
from
(
select
id,
order_status,
user_id,
out_trade_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
province_id,
activity_id,
original_total_amount,
benefit_reduce_amount,
feight_fee,
final_total_amount
from dwd.mall__fact_order_info
where dt in
(
select
from_unixtime(cast(create_time/1000 as bigint),'yyyy-MM-dd')
from ods.mall__order_info
where dt='$db_date'
)
)old
full outer join
(
select
info.id,
info.order_status,
info.user_id,
info.out_trade_no,
info.province_id,
act.activity_id,
log.tms,
info.original_total_amount,
info.benefit_reduce_amount,
info.feight_fee,
info.final_total_amount
from
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',from_unixtime(cast(operate_time/1000 as bigint),'yyyy-MM-dd')))),',','=')
tms
from ods.mall__order_status_log
where dt='$db_date'
group by order_id
)log
join
(
select * from ods.mall__order_info where dt='$db_date'
)info
on log.order_id=info.id
left join
(
select * from ods.mall__activity_order where dt='$db_date'
)act
on log.order_id=act.order_id
)new
on old.id=new.id;
"
$hive -e "$sql"
10 DWS层构建
不在进行压缩处理,因为压缩对于硬盘是好的,但是对于CPU计算是差的,对于DWS层的表,会被经常使用,那么讲究的是计算效率,此层主要处理每日主题行为
10.1 每日设备行为(用户行为)
- 建表
drop table if exists dws.mall__uv_detail_daycount
CREATE EXTERNAL TABLE `dws.mall__uv_detail_daycount`(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_count` bigint COMMENT '活跃次数'
) COMMENT '每日设备行为表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/uv_detail_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=uv_detail_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
PARTITION (dt='$db_date')
select
mid_id,
concat_ws('|', collect_set(user_id)) user_id,
concat_ws('|', collect_set(version_code)) version_code,
concat_ws('|', collect_set(version_name)) version_name,
concat_ws('|', collect_set(lang))lang,
concat_ws('|', collect_set(source)) source,
concat_ws('|', collect_set(os)) os,
concat_ws('|', collect_set(area)) area,
concat_ws('|', collect_set(model)) model,
concat_ws('|', collect_set(brand)) brand,
concat_ws('|', collect_set(sdk_version)) sdk_version,
concat_ws('|', collect_set(gmail)) gmail,
concat_ws('|', collect_set(height_width)) height_width,
concat_ws('|', collect_set(app_time)) app_time,
concat_ws('|', collect_set(network)) network,
concat_ws('|', collect_set(lng)) lng,
concat_ws('|', collect_set(lat)) lat,
count(*) login_count
from dwd.mall__start_log
where dt='$db_date'
group by mid_id;
"
$hive -e "$sql"
10.2 每日会员行为(业务)
- 建表
drop table if exists dws.mall__user_action_daycount
CREATE EXTERNAL TABLE `dws.mall__user_action_daycount`(
user_id string comment '用户 id',
login_count bigint comment '登录次数',
cart_count bigint comment '加入购物车次数',
cart_amount double comment '加入购物车金额',
order_count bigint comment '下单次数',
order_amount decimal(16,2) comment '下单金额',
payment_count bigint comment '支付次数',
payment_amount decimal(16,2) comment '支付金额'
) COMMENT '每日会员行为表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/user_action_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=user_action_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
with
tmp_login as
(
select
user_id,
count(*) login_count
from dwd.mall__start_log
where dt='$db_date'
and user_id is not null
group by user_id
),
tmp_cart as
(
select
user_id,
count(*) cart_count,
sum(cart_price*sku_num) cart_amount
from dwd.mall__fact_cart_info
where dt='$db_date'
and user_id is not null
and date_format(create_time,'yyyy-MM-dd')='$db_date'
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(final_total_amount) order_amount
from dwd.mall__fact_order_info
where dt='$db_date'
group by user_id
) ,
tmp_payment as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd.mall__fact_payment_info
where dt='$db_date'
group by user_id
)
insert overwrite table $hive_table_name partition(dt='$db_date')
select
user_actions.user_id,
sum(user_actions.login_count),
sum(user_actions.cart_count),
sum(user_actions.cart_amount),
sum(user_actions.order_count),
sum(user_actions.order_amount),
sum(user_actions.payment_count),
sum(user_actions.payment_amount)
from
(
select
user_id,
login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_login
union all
select
user_id,
0 login_count,
cart_count,
cart_amount,
0 order_count,
0 order_amount,
0 payment_count,
0 payment_amount
from
tmp_cart
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
order_count,
order_amount,
0 payment_count,
0 payment_amount
from tmp_order
union all
select
user_id,
0 login_count,
0 cart_count,
0 cart_amount,
0 order_count,
0 order_amount,
payment_count,
payment_amount
from tmp_payment
) user_actions
group by user_id;
"
$hive -e "$sql"
10.3 每日商品行为(业务)
- 建表
drop table if exists dws.mall__sku_action_daycount
CREATE EXTERNAL TABLE `dws.mall__sku_action_daycount`(
sku_id string comment 'sku_id',
order_count bigint comment '被下单次数',
order_num bigint comment '被下单件数',
order_amount decimal(16,2) comment '被下单金额',
payment_count bigint comment '被支付次数',
payment_num bigint comment '被支付件数',
payment_amount decimal(16,2) comment '被支付金额',
refund_count bigint comment '被退款次数',
refund_num bigint comment '被退款件数',
refund_amount decimal(16,2) comment '被退款金额',
cart_count bigint comment '被加入购物车次数',
cart_num bigint comment '被加入购物车件数',
favor_count bigint comment '被收藏次数',
appraise_good_count bigint comment '好评数',
appraise_mid_count bigint comment '中评数',
appraise_bad_count bigint comment '差评数',
appraise_default_count bigint comment '默认评价数'
) COMMENT '每日商品行为表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/sku_action_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=sku_action_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
with
tmp_order as
(
select
cast(sku_id as string) sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(total_amount) order_amount
from dwd.mall__fact_order_detail
where dt='$db_date'
group by sku_id
),
tmp_payment as
(
select
cast(sku_id as string) sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(total_amount) payment_amount
from dwd.mall__fact_order_detail
where dt='$db_date'
and order_id in
(
select
id
from dwd.mall__fact_order_info
where (dt='$db_date' or dt=date_add('$db_date',-1))
and date_format(payment_time,'yyyy-MM-dd')='$db_date'
)
group by sku_id
),
tmp_refund as
(
select
cast(sku_id as string) sku_id,
count(*) refund_count,
sum(refund_num) refund_num,
sum(refund_amount) refund_amount
from dwd.mall__fact_order_refund_info
where dt='$db_date'
group by sku_id
),
tmp_cart as
(
select
cast(sku_id as string) sku_id,
count(*) cart_count,
sum(sku_num) cart_num
from dwd.mall__fact_cart_info
where dt='$db_date'
and date_format(create_time,'yyyy-MM-dd')='$db_date'
group by sku_id
),
tmp_favor as
(
select
cast(sku_id as string) sku_id,
count(*) favor_count
from dwd.mall__fact_favor_info
where dt='$db_date'
and date_format(create_time,'yyyy-MM-dd')='$db_date'
group by sku_id
),
tmp_appraise as
(
select
cast(sku_id as string) sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd.mall__fact_comment_info
where dt='$db_date'
group by sku_id
)
insert overwrite table $hive_table_name partition(dt='$db_date')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_count),
sum(refund_num),
sum(refund_amount),
sum(cart_count),
sum(cart_num),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
payment_count,
payment_num,
payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_payment
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_count,
refund_num,
refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_refund
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
cart_count,
cart_num,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cart
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_favor
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_count,
0 refund_num,
0 refund_amount,
0 cart_count,
0 cart_num,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_appraise
)tmp
group by sku_id;
"
$hive -e "$sql"
10.4 每日优惠券统计(业务)
- 建表
drop table if exists dws.mall__coupon_use_daycount
CREATE EXTERNAL TABLE `dws.mall__coupon_use_daycount`(
`coupon_id` string COMMENT '优惠券 ID',
`coupon_name` string COMMENT '购物券名称',
`coupon_type` string COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` string COMMENT '满额数',
`condition_num` string COMMENT '满件数',
`activity_id` string COMMENT '活动编号',
`benefit_amount` string COMMENT '减金额',
`benefit_discount` string COMMENT '折扣',
`create_time` string COMMENT '创建时间',
`range_type` string COMMENT '范围类型 1、商品 2、品类 3、品牌',
`spu_id` string COMMENT '商品 id',
`tm_id` string COMMENT '品牌 id',
`category3_id` string COMMENT '品类 id',
`limit_num` string COMMENT '最多领用次数',
`get_count` bigint COMMENT '领用次数',
`using_count` bigint COMMENT '使用(下单)次数',
`used_count` bigint COMMENT '使用(支付)次数'
) COMMENT '每日优惠券统计表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/coupon_use_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=coupon_use_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name partition(dt='$db_date')
select
cu.coupon_id,
ci.coupon_name,
ci.coupon_type,
ci.condition_amount,
ci.condition_num,
ci.activity_id,
ci.benefit_amount,
ci.benefit_discount,
ci.create_time,
ci.range_type,
ci.spu_id,
ci.tm_id,
ci.category3_id,
ci.limit_num,
cu.get_count,
cu.using_count,
cu.used_count
from
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$db_date',1,0))
get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$db_date',1,0))
using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$db_date',1,0))
used_count
from dwd.mall__fact_coupon_use
where dt='$db_date'
group by coupon_id
)cu
left join
(
select
*
from dwd.mall__dim_coupon_info
where dt='$db_date'
)ci on cu.coupon_id=ci.id;
"
$hive -e "$sql"
10.5 每日活动统计(业务)
- 建表
drop table if exists dws.mall__activity_info_daycount
CREATE EXTERNAL TABLE `dws.mall__activity_info_daycount`(
`id` string COMMENT '编号',
`activity_name` string COMMENT '活动名称',
`activity_type` string COMMENT '活动类型',
`start_time` string COMMENT '开始时间',
`end_time` string COMMENT '结束时间',
`create_time` string COMMENT '创建时间',
`order_count` bigint COMMENT '下单次数',
`payment_count` bigint COMMENT '支付次数'
) COMMENT '每日活动统计表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/activity_info_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=activity_info_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name partition(dt='$db_date')
select
oi.activity_id,
ai.activity_name,
ai.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
oi.order_count,
oi.payment_count
from
(
select
activity_id,
sum(if(date_format(create_time,'yyyy-MM-dd')='$db_date',1,0))
order_count,
sum(if(date_format(payment_time,'yyyy-MM-dd')='$db_date',1,0))
payment_count
from dwd.mall__fact_order_info
where (dt='$db_date' or dt=date_add('$db_date',-1))
and activity_id is not null
group by activity_id
)oi
join
(
select
*
from dwd.mall__dim_activity_info
where dt='$db_date'
)ai
on oi.activity_id=ai.id;
"
$hive -e "$sql"
10.6 每日购买行为(业务)
- 建表
drop table if exists dws.mall__sale_detail_daycount
CREATE EXTERNAL TABLE `dws.mall__sale_detail_daycount`(
user_id string comment '用户 id',
sku_id string comment '商品 id',
user_gender string comment '用户性别',
user_age string comment '用户年龄',
user_level string comment '用户等级',
order_price decimal(10,2) comment '商品价格',
sku_name string comment '商品名称',
sku_tm_id string comment '品牌 id',
sku_category3_id string comment '商品三级品类 id',
sku_category2_id string comment '商品二级品类 id',
sku_category1_id string comment '商品一级品类 id',
sku_category3_name string comment '商品三级品类名称',
sku_category2_name string comment '商品二级品类名称',
sku_category1_name string comment '商品一级品类名称',
spu_id string comment '商品 spu',
sku_num int comment '购买个数',
order_count bigint comment '当日下单单数',
order_amount decimal(16,2) comment '当日下单金额'
) COMMENT '每日购买行为表'
PARTITIONED BY (
`dt` String COMMENT 'partition'
)
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dws/mall/sale_detail_daycount/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dws
table_name=sale_detail_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name partition(dt='$db_date')
select
op.user_id,
op.sku_id,
ui.gender,
months_between('$db_date', ui.birthday)/12 age,
ui.user_level,
si.price,
si.sku_name,
si.tm_id,
si.category3_id,
si.category2_id,
si.category1_id,
si.category3_name,
si.category2_name,
si.category1_name,
si.spu_id,
op.sku_num,
op.order_count,
op.order_amount
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
sum(total_amount) order_amount
from dwd.mall__fact_order_detail
where dt='$db_date'
group by user_id, sku_id
)op
join
(
select
*
from dwd.mall__dim_user_info_his
where end_date='9999-99-99'
)ui on op.user_id = ui.id
join
(
select
*
from dwd.mall__dim_sku_info
where dt='$db_date'
)si on op.sku_id = si.id;
"
$hive -e "$sql"
11 DWT层构建
此层主要针对dws层每日数据进行汇总,不建立分区,不压缩,每日进行数据覆盖
11.1 设备主题宽表
- 建表
drop table if exists dwt.mall__uv_topic
CREATE EXTERNAL TABLE `dwt.mall__uv_topic`(
`mid_id` string COMMENT '设备唯一标识',
`user_id` string COMMENT '用户标识',
`version_code` string COMMENT '程序版本号',
`version_name` string COMMENT '程序版本名',
`lang` string COMMENT '系统语言',
`source` string COMMENT '渠道号',
`os` string COMMENT '安卓系统版本',
`area` string COMMENT '区域',
`model` string COMMENT '手机型号',
`brand` string COMMENT '手机品牌',
`sdk_version` string COMMENT 'sdkVersion',
`gmail` string COMMENT 'gmail',
`height_width` string COMMENT '屏幕宽高',
`app_time` string COMMENT '客户端日志产生时的时间',
`network` string COMMENT '网络模式',
`lng` string COMMENT '经度',
`lat` string COMMENT '纬度',
`login_date_first` string comment '首次活跃时间',
`login_date_last` string comment '末次活跃时间',
`login_day_count` bigint comment '当日活跃次数',
`login_count` bigint comment '累积活跃天数'
) COMMENT '设备主题宽表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwt/mall/uv_topic/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwt
table_name=uv_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
nvl(new.mid_id,old.mid_id),
nvl(new.user_id,old.user_id),
nvl(new.version_code,old.version_code),
nvl(new.version_name,old.version_name),
nvl(new.lang,old.lang),
nvl(new.source,old.source),
nvl(new.os,old.os),
nvl(new.area,old.area),
nvl(new.model,old.model),
nvl(new.brand,old.brand),
nvl(new.sdk_version,old.sdk_version),
nvl(new.gmail,old.gmail),
nvl(new.height_width,old.height_width),
nvl(new.app_time,old.app_time),
nvl(new.network,old.network),
nvl(new.lng,old.lng),
nvl(new.lat,old.lat),
if(old.mid_id is null,'2020-03-10',old.login_date_first),
if(new.mid_id is not null,'2020-03-10',old.login_date_last),
if(new.mid_id is not null, new.login_count,0),
nvl(old.login_count,0)+if(new.login_count>0,1,0)
from
(
select
*
from dwt.mall__uv_topic
)old
full outer join
(
select
*
from dws.mall__uv_detail_daycount
where dt='$db_date'
)new
on old.mid_id=new.mid_id;
"
$hive -e "$sql"
11.2 会员主题宽表
- 建表
drop table if exists dwt.mall__user_topic
CREATE EXTERNAL TABLE `dwt.mall__user_topic`(
user_id string comment '用户 id',
login_date_first string comment '首次登录时间',
login_date_last string comment '末次登录时间',
login_count bigint comment '累积登录天数',
login_last_30d_count bigint comment '最近 30 日登录天数',
order_date_first string comment '首次下单时间',
order_date_last string comment '末次下单时间',
order_count bigint comment '累积下单次数',
order_amount decimal(16,2) comment '累积下单金额',
order_last_30d_count bigint comment '最近 30 日下单次数',
order_last_30d_amount bigint comment '最近 30 日下单金额',
payment_date_first string comment '首次支付时间',
payment_date_last string comment '末次支付时间',
payment_count decimal(16,2) comment '累积支付次数',
payment_amount decimal(16,2) comment '累积支付金额',
payment_last_30d_count decimal(16,2) comment '最近 30 日支付次数',
payment_last_30d_amount decimal(16,2) comment '最近 30 日支付金额'
) COMMENT '会员主题宽表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwt/mall/user_topic/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwt
table_name=user_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
nvl(new.user_id,old.user_id),
if(old.login_date_first is null and
new.login_count>0,'$db_date',old.login_date_first),
if(new.login_count>0,'$db_date',old.login_date_last),
nvl(old.login_count,0)+if(new.login_count>0,1,0),
nvl(new.login_last_30d_count,0),
if(old.order_date_first is null and
new.order_count>0,'$db_date',old.order_date_first),
if(new.order_count>0,'$db_date',old.order_date_last),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.order_amount,0)+nvl(new.order_amount,0),
nvl(new.order_last_30d_count,0),
nvl(new.order_last_30d_amount,0),
if(old.payment_date_first is null and
new.payment_count>0,'$db_date',old.payment_date_first),
if(new.payment_count>0,'$db_date',old.payment_date_last),
nvl(old.payment_count,0)+nvl(new.payment_count,0),
nvl(old.payment_amount,0)+nvl(new.payment_amount,0),
nvl(new.payment_last_30d_count,0),
nvl(new.payment_last_30d_amount,0)
from
dwt.mall__user_topic old
full outer join
(
select
user_id,
sum(if(dt='$db_date',login_count,0)) login_count,
sum(if(dt='$db_date',order_count,0)) order_count,
sum(if(dt='$db_date',order_amount,0)) order_amount,
sum(if(dt='$db_date',payment_count,0)) payment_count,
sum(if(dt='$db_date',payment_amount,0)) payment_amount,
sum(if(login_count>0,1,0)) login_last_30d_count,
sum(order_count) order_last_30d_count,
sum(order_amount) order_last_30d_amount,
sum(payment_count) payment_last_30d_count,
sum(payment_amount) payment_last_30d_amount
from dws.mall__user_action_daycount
where dt>=date_add( '$db_date',-30)
group by user_id
)new
on old.user_id=new.user_id;
"
$hive -e "$sql"
11.3 商品主题宽表
- 建表
drop table if exists dwt.mall__sku_topic
CREATE EXTERNAL TABLE `dwt.mall__sku_topic`(
sku_id string comment 'sku_id',
spu_id string comment 'spu_id',
order_last_30d_count bigint comment '最近 30 日被下单次数',
order_last_30d_num bigint comment '最近 30 日被下单件数',
order_last_30d_amount decimal(16,2) comment '最近 30 日被下单金额',
order_count bigint comment '累积被下单次数',
order_num bigint comment '累积被下单件数',
order_amount decimal(16,2) comment '累积被下单金额',
payment_last_30d_count bigint comment '最近 30 日被支付次数',
payment_last_30d_num bigint comment '最近 30 日被支付件数',
payment_last_30d_amount decimal(16,2) comment '最近 30 日被支付金额',
payment_count bigint comment '累积被支付次数',
payment_num bigint comment '累积被支付件数',
payment_amount decimal(16,2) comment '累积被支付金额',
refund_last_30d_count bigint comment '最近三十日退款次数',
refund_last_30d_num bigint comment '最近三十日退款件数',
refund_last_30d_amount decimal(10,2) comment '最近三十日退款金额',
refund_count bigint comment '累积退款次数',
refund_num bigint comment '累积退款件数',
refund_amount decimal(10,2) comment '累积退款金额',
cart_last_30d_count bigint comment '最近 30 日被加入购物车次数',
cart_last_30d_num bigint comment '最近 30 日被加入购物车件数',
cart_count bigint comment '累积被加入购物车次数',
cart_num bigint comment '累积被加入购物车件数',
favor_last_30d_count bigint comment '最近 30 日被收藏次数',
favor_count bigint comment '累积被收藏次数',
appraise_last_30d_good_count bigint comment '最近 30 日好评数',
appraise_last_30d_mid_count bigint comment '最近 30 日中评数',
appraise_last_30d_bad_count bigint comment '最近 30 日差评数',
appraise_last_30d_default_count bigint comment '最近 30 日默认评价数',
appraise_good_count bigint comment '累积好评数',
appraise_mid_count bigint comment '累积中评数',
appraise_bad_count bigint comment '累积差评数',
appraise_default_count bigint comment '累积默认评价数'
) COMMENT '商品主题宽表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwt/mall/sku_topic/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwt
table_name=sku_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
nvl(new.sku_id,old.sku_id), sku_info.spu_id,
nvl(new.order_count30,0),
nvl(new.order_num30,0),
nvl(new.order_amount30,0),
nvl(old.order_count,0) + nvl(new.order_count,0),
nvl(old.order_num,0) + nvl(new.order_num,0),
nvl(old.order_amount,0) + nvl(new.order_amount,0),
nvl(new.payment_count30,0),
nvl(new.payment_num30,0),
nvl(new.payment_amount30,0),
nvl(old.payment_count,0) + nvl(new.payment_count,0),
nvl(old.payment_num,0) + nvl(new.payment_count,0),
nvl(old.payment_amount,0) + nvl(new.payment_count,0),
nvl(new.refund_count30,0),
nvl(new.refund_num30,0),
nvl(new.refund_amount30,0),
nvl(old.refund_count,0) + nvl(new.refund_count,0),
nvl(old.refund_num,0) + nvl(new.refund_num,0),
nvl(old.refund_amount,0) + nvl(new.refund_amount,0),
nvl(new.cart_count30,0),
nvl(new.cart_num30,0),
nvl(old.cart_count,0) + nvl(new.cart_count,0),
nvl(old.cart_num,0) + nvl(new.cart_num,0),
nvl(new.favor_count30,0),
nvl(old.favor_count,0) + nvl(new.favor_count,0),
nvl(new.appraise_good_count30,0),
nvl(new.appraise_mid_count30,0),
nvl(new.appraise_bad_count30,0),
nvl(new.appraise_default_count30,0) ,
nvl(old.appraise_good_count,0) + nvl(new.appraise_good_count,0),
nvl(old.appraise_mid_count,0) + nvl(new.appraise_mid_count,0),
nvl(old.appraise_bad_count,0) + nvl(new.appraise_bad_count,0),
nvl(old.appraise_default_count,0) + nvl(new.appraise_default_count,0)
from
(
select
sku_id,
spu_id,
order_last_30d_count,
order_last_30d_num,
order_last_30d_amount,
order_count,
order_num,
order_amount ,
payment_last_30d_count,
payment_last_30d_num,
payment_last_30d_amount,
payment_count,
payment_num,
payment_amount,
refund_last_30d_count,
refund_last_30d_num,
refund_last_30d_amount,
refund_count,
refund_num,
refund_amount,
cart_last_30d_count,
cart_last_30d_num,
cart_count,
cart_num,
favor_last_30d_count,
favor_count,
appraise_last_30d_good_count,
appraise_last_30d_mid_count,
appraise_last_30d_bad_count,
appraise_last_30d_default_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from dwt.mall__sku_topic
)old
full outer join
(
select
sku_id,
sum(if(dt='$db_date', order_count,0 )) order_count,
sum(if(dt='$db_date',order_num ,0 )) order_num,
sum(if(dt='$db_date',order_amount,0 )) order_amount ,
sum(if(dt='$db_date',payment_count,0 )) payment_count,
sum(if(dt='$db_date',payment_num,0 )) payment_num,
sum(if(dt='$db_date',payment_amount,0 )) payment_amount,
sum(if(dt='$db_date',refund_count,0 )) refund_count,
sum(if(dt='$db_date',refund_num,0 )) refund_num,
sum(if(dt='$db_date',refund_amount,0 )) refund_amount,
sum(if(dt='$db_date',cart_count,0 )) cart_count,
sum(if(dt='$db_date',cart_num,0 )) cart_num,
sum(if(dt='$db_date',favor_count,0 )) favor_count,
sum(if(dt='$db_date',appraise_good_count,0 )) appraise_good_count,
sum(if(dt='$db_date',appraise_mid_count,0 ) ) appraise_mid_count ,
sum(if(dt='$db_date',appraise_bad_count,0 )) appraise_bad_count,
sum(if(dt='$db_date',appraise_default_count,0 )) appraise_default_count,
sum(order_count) order_count30 ,
sum(order_num) order_num30,
sum(order_amount) order_amount30,
sum(payment_count) payment_count30,
sum(payment_num) payment_num30,
sum(payment_amount) payment_amount30,
sum(refund_count) refund_count30,
sum(refund_num) refund_num30,
sum(refund_amount) refund_amount30,
sum(cart_count) cart_count30,
sum(cart_num) cart_num30,
sum(favor_count) favor_count30,
sum(appraise_good_count) appraise_good_count30,
sum(appraise_mid_count) appraise_mid_count30,
sum(appraise_bad_count) appraise_bad_count30,
sum(appraise_default_count) appraise_default_count30
from dws.mall__sku_action_daycount
where dt >= date_add ('$db_date', -30)
group by sku_id
)new
on new.sku_id = old.sku_id
left join
(
select * from dwd.mall__dim_sku_info where dt='$db_date'
) sku_info
on nvl(new.sku_id,old.sku_id)= sku_info.id;
"
$hive -e "$sql"
11.4 优惠卷主题宽表
- 建表
drop table if exists dwt.mall__coupon_topic
CREATE EXTERNAL TABLE `dwt.mall__coupon_topic`(
`coupon_id` string COMMENT '优惠券 ID',
`get_day_count` bigint COMMENT '当日领用次数',
`using_day_count` bigint COMMENT '当日使用(下单)次数',
`used_day_count` bigint COMMENT '当日使用(支付)次数',
`get_count` bigint COMMENT '累积领用次数',
`using_count` bigint COMMENT '累积使用(下单)次数',
`used_count` bigint COMMENT '累积使用(支付)次数'
) COMMENT '优惠券主题宽表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwt/mall/coupon_topic/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwt
table_name=coupon_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
nvl(new.coupon_id,old.coupon_id),
nvl(new.get_count,0),
nvl(new.using_count,0),
nvl(new.used_count,0),
nvl(old.get_count,0)+nvl(new.get_count,0),
nvl(old.using_count,0)+nvl(new.using_count,0),
nvl(old.used_count,0)+nvl(new.used_count,0)
from
(
select
*
from dwt.mall__coupon_topic
)old
full outer join
(
select
coupon_id,
get_count,
using_count,
used_count
from dws.mall__coupon_use_daycount
where dt='$db_date'
)new
on old.coupon_id=new.coupon_id;
"
$hive -e "$sql"
11.5 活动主题宽表
- 建表
drop table if exists dwt.mall__activity_topic
CREATE EXTERNAL TABLE `dwt.mall__activity_topic`(
`id` string COMMENT '活动 id',
`activity_name` string COMMENT '活动名称',
`order_day_count` bigint COMMENT '当日日下单次数',
`payment_day_count` bigint COMMENT '当日支付次数',
`order_count` bigint COMMENT '累积下单次数',
`payment_count` bigint COMMENT '累积支付次数'
) COMMENT '活动主题宽表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/dwt/mall/activity_topic/'
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=dwt
table_name=activity_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert overwrite table $hive_table_name
select
nvl(new.id,old.id),
nvl(new.activity_name,old.activity_name),
nvl(new.order_count,0),
nvl(new.payment_count,0),
nvl(old.order_count,0)+nvl(new.order_count,0),
nvl(old.payment_count,0)+nvl(new.payment_count,0)
from
(
select
*
from dwt.mall__activity_topic
)old
full outer join
(
select
id,
activity_name,
order_count,
payment_count
from dws.mall__activity_info_daycount
where dt='$db_date'
)new
on old.id=new.id;
"
$hive -e "$sql"
12 ADS层构建
此层为最终数据需求层,考虑数据导出和数据数量决定是否需要压缩,不需要分区,每天刷写
12.1 设备主题
12.1.1 活跃设备数(日、周、月)
日活:当日活跃的设备数
周活:当周活跃的设备数
月活:当月活跃的设备数
- 建表
drop table if exists ads.mall__uv_count
CREATE EXTERNAL TABLE `ads.mall__uv_count`(
`dt` string COMMENT '统计日期',
`day_count` bigint COMMENT '当日用户数量',
`wk_count` bigint COMMENT '当周用户数量',
`mn_count` bigint COMMENT '当月用户数量',
`is_weekend` string COMMENT 'Y,N 是否是周末,用于得到本周最终结果',
`is_monthend` string COMMENT 'Y,N 是否是月末,用于得到本月最终结果'
) COMMENT '活跃设备数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/uv_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=uv_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
daycount.ct,
wkcount.ct,
mncount.ct,
if(date_add(next_day('$db_date','MO'),-1)='$db_date','Y','N') ,
if(last_day('$db_date')='$db_date','Y','N')
from
(
select
'$db_date' dt,
count(*) ct
from dwt.mall__uv_topic
where login_date_last='$db_date'
)daycount join
(
select
'$db_date' dt,
count (*) ct
from dwt.mall__uv_topic
where login_date_last>=date_add(next_day('$db_date','MO'),-7)
and login_date_last<= date_add(next_day('$db_date','MO'),-1)
) wkcount on daycount.dt=wkcount.dt
join
(
select
'$db_date' dt,
count (*) ct
from dwt.mall__uv_topic
where
date_format(login_date_last,'yyyy-MM')=date_format('$db_date','yyyy-MM')
)mncount on daycount.dt=mncount.dt;
"
$hive -e "$sql"
12.1.2 每日新增设备
- 建表
drop table if exists ads.mall__new_mid_count
CREATE EXTERNAL TABLE `ads.mall__new_mid_count`(
`create_date` string comment '创建时间' ,
`new_mid_count` bigint comment '新增设备数量'
) COMMENT '每日新增设备表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/new_mid_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=new_mid_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
login_date_first,
count(*)
from dwt.mall__uv_topic
where login_date_first='$db_date'
group by login_date_first;
"
$hive -e "$sql"
12.1.3 沉默用户数
沉默用户:只在安装当天启动过,且启动时间是在 7 天前
- 建表
drop table if exists ads.mall__silent_count
CREATE EXTERNAL TABLE `ads.mall__silent_count`(
`dt` string COMMENT '统计日期',
`silent_count` bigint COMMENT '沉默设备数'
) COMMENT '沉默用户数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/silent_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=silent_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
count(*)
from dwt.mall__uv_topic
where login_date_first=login_date_last
and login_date_last<=date_add('$db_date',-7);
"
$hive -e "$sql"
12.1.4 本周回流用户数
本周回流用户:上周未活跃,本周活跃的设备,且不是本周新增设备
- 建表
drop table if exists ads.mall__back_count
CREATE EXTERNAL TABLE `ads.mall__back_count`(
`wk_dt` string COMMENT '统计日期所在周',
`wastage_count` bigint COMMENT '回流设备数'
) COMMENT '本周回流用户数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/back_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=back_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
count(*)
from
(
select
mid_id
from dwt.mall__uv_topic
where login_date_last>=date_add(next_day('$db_date','MO'),-7)
and login_date_last<= date_add(next_day('$db_date','MO'),-1)
and login_date_first<date_add(next_day('$db_date','MO'),-7)
)current_wk
left join
(
select
mid_id
from dws.mall__uv_detail_daycount
where dt>=date_add(next_day('$db_date','MO'),-7*2)
and dt<= date_add(next_day('$db_date','MO'),-7-1)
group by mid_id
)last_wk
on current_wk.mid_id=last_wk.mid_id
where last_wk.mid_id is null;
"
$hive -e "$sql"
12.1.5 流失用户数
流失用户:最近 7 天未活跃的设备
- 建表
drop table if exists ads.mall__wastage_count
CREATE EXTERNAL TABLE `ads.mall__wastage_count`(
`dt` string COMMENT '统计日期',
`wastage_count` bigint COMMENT '流失设备数'
) COMMENT '流失用户数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/wastage_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=wastage_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
count(*)
from
(
select
mid_id
from dwt.mall__uv_topic
where login_date_last<=date_add('$db_date',-7)
group by mid_id
)t1;
"
$hive -e "$sql"
12.1.6 留存率
- 建表
drop table if exists ads.mall__user_retention_day_rate
CREATE EXTERNAL TABLE `ads.mall__user_retention_day_rate`(
`stat_date` string comment '统计日期',
`create_date` string comment '设备新增日期',
`retention_day` int comment '截止当前日期留存天数',
`retention_count` bigint comment '留存数量',
`new_mid_count` bigint comment '设备新增数量',
`retention_ratio` decimal(10,2) comment '留存率'
) COMMENT '留存率表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/user_retention_day_rate/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=user_retention_day_rate
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',--统计日期
date_add('$db_date',-1),--新增日期
1,--留存天数
sum(if(login_date_first=date_add('$db_date',-1) and
login_date_last='$db_date',1,0)),--2020-03-09 的 1 日留存数
sum(if(login_date_first=date_add('$db_date',-1),1,0)),--2020-03-09 新增
sum(if(login_date_first=date_add('$db_date',-1) and
login_date_last='$db_date',1,0))/sum(if(login_date_first=date_add('$db_date',-1),1,0))*100
from dwt.mall__uv_topic
union all
select
'$db_date',--统计日期
date_add('$db_date',-2),--新增日期
2,--留存天数
sum(if(login_date_first=date_add('$db_date',-2) and
login_date_last='$db_date',1,0)),--2020-03-08 的 2 日留存数
sum(if(login_date_first=date_add('$db_date',-2),1,0)),--2020-03-08 新增
sum(if(login_date_first=date_add('$db_date',-2) and
login_date_last='$db_date',1,0))/sum(if(login_date_first=date_add('$db_date',-2),1,0))*100
from dwt.mall__uv_topic
union all
select
'$db_date',--统计日期
date_add('$db_date',-3),--新增日期
3,--留存天数
sum(if(login_date_first=date_add('$db_date',-3) and
login_date_last='$db_date',1,0)),--2020-03-07 的 3 日留存数
sum(if(login_date_first=date_add('$db_date',-3),1,0)),--2020-03-07 新增
sum(if(login_date_first=date_add('$db_date',-3) and
login_date_last='$db_date',1,0))/sum(if(login_date_first=date_add('$db_date',-3),1,0))*100
from dwt.mall__uv_topic;
"
$hive -e "$sql"
12.1.7 最近连续三周活跃用户数
- 建表
drop table if exists ads.mall__continuity_wk_count
CREATE EXTERNAL TABLE `ads.mall__continuity_wk_count`(
`dt` string COMMENT '统计日期,一般用结束周周日日期,如果每天计算一次,可用当天日期',
`wk_dt` string COMMENT '持续时间',
`continuity_count` bigint COMMENT '活跃次数'
) COMMENT '最近连续三周活跃用户数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/continuity_wk_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=continuity_wk_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
concat(date_add(next_day('$db_date','MO'),-7*3),'_',date_add(next_day('$db_date','MO'),-1)),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from dws.mall__uv_detail_daycount
where dt>=date_add(next_day('$db_date','monday'),-7)
and dt<=date_add(next_day('$db_date','monday'),-1)
group by mid_id
union all
select
mid_id
from dws.mall__uv_detail_daycount
where dt>=date_add(next_day('$db_date','monday'),-7*2)
and dt<=date_add(next_day('$db_date','monday'),-7-1)
group by mid_id
union all
select
mid_id
from dws.mall__uv_detail_daycount
where dt>=date_add(next_day('$db_date','monday'),-7*3)
and dt<=date_add(next_day('$db_date','monday'),-7*2-1)
group by mid_id
)t1
group by mid_id
having count(*)=3
)t2
"
$hive -e "$sql"
12.1.8 最近七天内连续三天活跃用户数
- 建表
drop table if exists ads.mall__continuity_uv_count
CREATE EXTERNAL TABLE `ads.mall__continuity_uv_count`(
`dt` string COMMENT '统计日期',
`wk_dt` string COMMENT '最近 7 天日期',
`continuity_count` bigint
) COMMENT '最近七天内连续三天活跃用户数表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/continuity_uv_count/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=continuity_uv_count
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
concat(date_add('db_date',-6),'_','db_date'),
count(*)
from
(
select
mid_id
from
(
select
mid_id
from
(
select
mid_id,
date_sub(dt,rank) date_dif
from
(
select
mid_id,
dt,
rank() over(partition by mid_id order by dt) rank
from dws.mall__uv_detail_daycount
where dt>=date_add('db_date',-6) and
dt<='db_date'
)t1
)t2
group by mid_id,date_dif
having count(*)>=3
)t3
group by mid_id
)t4;
"
$hive -e "$sql"
12.2 会员主题
12.2.1 会员主题信息
- 建表
drop table if exists ads.mall__user_topic
CREATE EXTERNAL TABLE `ads.mall__user_topic`(
`dt` string COMMENT '统计日期',
`day_users` string COMMENT '活跃会员数',
`day_new_users` string COMMENT '新增会员数',
`day_new_payment_users` string COMMENT '新增消费会员数',
`payment_users` string COMMENT '总付费会员数',
`users` string COMMENT '总会员数',
`day_users2users` decimal(10,2) COMMENT '会员活跃率',
`payment_users2users` decimal(10,2) COMMENT '会员付费率',
`day_new_users2users` decimal(10,2) COMMENT '会员新鲜度'
) COMMENT '会员主题信息表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/user_topic/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=user_topic
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
sum(if(login_date_last='$db_date',1,0)),
sum(if(login_date_first='$db_date',1,0)),
sum(if(payment_date_first='$db_date',1,0)),
sum(if(payment_count>0,1,0)),
count(*),
sum(if(login_date_last='$db_date',1,0))/count(*),
sum(if(payment_count>0,1,0))/count(*),
sum(if(login_date_first='$db_date',1,0))/sum(if(login_date_last='$db_date',1,0))
from dwt.mall__user_topic
"
$hive -e "$sql"
12.2.2 漏斗分析
统计“浏览->购物车->下单->支付”的转化率
思路:统计各个行为的人数,然后计算比值。
- 建表
drop table if exists ads.mall__user_action_convert_day
CREATE EXTERNAL TABLE `ads.mall__user_action_convert_day`(
`dt` string COMMENT '统计日期',
`total_visitor_m_count` bigint COMMENT '总访问人数',
`cart_u_count` bigint COMMENT '加入购物车的人数',
`visitor2cart_convert_ratio` decimal(10,2) COMMENT '访问到加入购物车转化率',
`order_u_count` bigint COMMENT '下单人数',
`cart2order_convert_ratio` decimal(10,2) COMMENT '加入购物车到下单转化率',
`payment_u_count` bigint COMMENT '支付人数',
`order2payment_convert_ratio` decimal(10,2) COMMENT '下单到支付的转化率'
) COMMENT '漏斗分析表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/user_action_convert_day/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=user_action_convert_day
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
uv.day_count,
ua.cart_count,
cast(ua.cart_count/uv.day_count as decimal(10,2)) visitor2cart_convert_ratio,
ua.order_count,
cast(ua.order_count/ua.cart_count as decimal(10,2)) visitor2order_convert_ratio,
ua.payment_count,
cast(ua.payment_count/ua.order_count as decimal(10,2)) order2payment_convert_ratio
from
(
select
dt,
sum(if(cart_count>0,1,0)) cart_count,
sum(if(order_count>0,1,0)) order_count,
sum(if(payment_count>0,1,0)) payment_count
from dws.mall__user_action_daycount
where dt='$db_date'
group by dt
)ua join ads.mall__uv_count uv on uv.dt=ua.dt;
"
$hive -e "$sql"
12.3 商品主题
12.3.1 商品个数信息
- 建表
drop table if exists ads.mall__product_info
CREATE EXTERNAL TABLE `ads.mall__product_info`(
`dt` string COMMENT '统计日期',
`sku_num` string COMMENT 'sku 个数',
`spu_num` string COMMENT 'spu 个数'
) COMMENT '商品个数信息表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/product_info/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=product_info
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
sku_num,
spu_num
from
(
select
'$db_date' dt,
count(*) sku_num
from
dwt.mall__sku_topic
) tmp_sku_num
join
(
select
'$db_date' dt,
count(*) spu_num
from
(
select
spu_id
from
dwt.mall__sku_topic
group by
spu_id
) tmp_spu_id
) tmp_spu_num
on
tmp_sku_num.dt=tmp_spu_num.dt;
"
$hive -e "$sql"
12.3.2 商品销量排行
- 建表
drop table if exists ads.mall__product_sale_topN
CREATE EXTERNAL TABLE `ads.mall__product_sale_topN`(
`dt` string COMMENT '统计日期',
`sku_num` string COMMENT 'sku 个数',
`spu_num` string COMMENT 'spu 个数'
) COMMENT '商品销量排名表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/product_sale_topN/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=product_sale_topN
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
sku_id,
payment_amount
from
dws.mall__sku_action_daycount
where
dt='$db_date'
order by payment_amount desc
limit 10;
"
$hive -e "$sql"
12.3.3 商品收藏排名
- 建表
drop table if exists ads.mall__product_favor_topN
CREATE EXTERNAL TABLE `ads.mall__product_favor_topN`(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`favor_count` bigint COMMENT '收藏量'
) COMMENT '商品收藏排名表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/product_favor_topN/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=product_favor_topN
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
sku_id,
favor_count
from
dws.mall__sku_action_daycount
where
dt='$db_date'
order by favor_count desc
limit 10;
"
$hive -e "$sql"
12.3.4 商品加入购物车排名
- 建表
drop table if exists ads.mall__product_cart_topN
CREATE EXTERNAL TABLE `ads.mall__product_cart_topN`(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`cart_num` bigint COMMENT '加入购物车数量'
) COMMENT '商品加入购物车排名表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/product_cart_topN/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=product_cart_topN
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
sku_id,
cart_num
from
dws.mall__sku_action_daycount
where
dt='$db_date'
order by cart_num desc
limit 10;
"
$hive -e "$sql"
12.3.5 商品退款率排名(近30天)
- 建表
drop table if exists ads.mall__product_refund_topN
CREATE EXTERNAL TABLE `ads.mall__product_refund_topN`(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`refund_ratio` decimal(10,2) COMMENT '退款率'
) COMMENT '商品退款率排名(最近 30 天)表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/product_refund_topN/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=product_refund_topN
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
sku_id,
refund_last_30d_count/payment_last_30d_count*100 refund_ratio
from dwt.mall__sku_topic
order by refund_ratio desc
limit 10;
"
$hive -e "$sql"
12.3.6 商品差评率
- 建表
drop table if exists ads.mall__appraise_bad_topN
CREATE EXTERNAL TABLE `ads.mall__appraise_bad_topN`(
`dt` string COMMENT '统计日期',
`sku_id` string COMMENT '商品 ID',
`appraise_bad_ratio` decimal(10,2) COMMENT '差评率'
) COMMENT '商品差评率表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/appraise_bad_topN/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=appraise_bad_topN
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date' dt,
sku_id,
appraise_bad_count/(appraise_good_count+appraise_mid_count+appraise_bad_count+appraise_default_count) appraise_bad_ratio
from
dws.mall__sku_action_daycount
where
dt='$db_date'
order by appraise_bad_ratio desc
limit 10;
"
$hive -e "$sql"
12.4 营销主题
12.4.1 下单数目统计
- 建表
drop table if exists ads.mall__order_daycount
CREATE EXTERNAL TABLE `ads.mall__order_daycount`(
dt string comment '统计日期',
order_count bigint comment '单日下单笔数',
order_amount bigint comment '单日下单金额',
order_users bigint comment '单日下单用户数'
) COMMENT '下单数目统计表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/order_daycount/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=order_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
'$db_date',
sum(order_count),
sum(order_amount),
sum(if(order_count>0,1,0))
from dws.mall__user_action_daycount
where dt='$db_date';
"
$hive -e "$sql"
12.4.2 支付信息统计
- 建表
drop table if exists ads.mall__payment_daycount
CREATE EXTERNAL TABLE `ads.mall__payment_daycount`(
dt string comment '统计日期',
order_count bigint comment '单日支付笔数',
order_amount bigint comment '单日支付金额',
payment_user_count bigint comment '单日支付人数',
payment_sku_count bigint comment '单日支付商品数',
payment_avg_time double comment '下单到支付的平均时长,取分钟数'
) COMMENT '支付信息统计表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/payment_daycount/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=payment_daycount
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
tmp_payment.dt,
tmp_payment.payment_count,
tmp_payment.payment_amount,
tmp_payment.payment_user_count,
tmp_skucount.payment_sku_count,
tmp_time.payment_avg_time
from
(
select
'$db_date' dt,
sum(payment_count) payment_count,
sum(payment_amount) payment_amount,
sum(if(payment_count>0,1,0)) payment_user_count
from dws.mall__user_action_daycount
where dt='$db_date'
)tmp_payment
join
(
select
'$db_date' dt,
sum(if(payment_count>0,1,0)) payment_sku_count
from dws.mall__sku_action_daycount
where dt='$db_date'
)tmp_skucount on tmp_payment.dt=tmp_skucount.dt
join
(
select
'$db_date' dt,
sum(unix_timestamp(payment_time)-unix_timestamp(create_time))/count(*)/60
payment_avg_time
from dwd.mall__fact_order_info
where dt='$db_date'
and payment_time is not null
)tmp_time on tmp_payment.dt=tmp_time.dt
"
$hive -e "$sql"
12.4.3 复购率
- 建表
drop table if exists ads.mall__sale_tm_category1_stat_mn
CREATE EXTERNAL TABLE `ads.mall__sale_tm_category1_stat_mn`(
tm_id string comment '品牌 id',
category1_id string comment '1 级品类 id ',
category1_name string comment '1 级品类名称 ',
buycount bigint comment '购买人数',
buy_twice_last bigint comment '两次以上购买人数',
buy_twice_last_ratio decimal(10,2) comment '单次复购率',
buy_3times_last bigint comment '三次以上购买人数',
buy_3times_last_ratio decimal(10,2) comment '多次复购率',
stat_mn string comment '统计月份',
stat_date string comment '统计日期'
) COMMENT '复购率表'
row format delimited fields terminated by '\t'
stored as parquet
location '/warehouse/ads/mall/sale_tm_category1_stat_mn/'
tblproperties ("parquet.compression"="snappy")
- 导入数据
#!/bin/bash
db_date=${date}
hive=/opt/cloudera/parcels/CDH-6.2.0-1.cdh6.2.0.p0.967373/bin/hive
APP1=mall
APP2=ads
table_name=sale_tm_category1_stat_mn
hive_table_name=$APP2.mall__$table_name
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "${date}" ] ;then
db_date=${date}
else
db_date=`date -d "-1 day" +%F`
fi
sql="
insert into table $hive_table_name
select
mn.sku_tm_id,
mn.sku_category1_id,
mn.sku_category1_name,
sum(if(mn.order_count>=1,1,0)) buycount,
sum(if(mn.order_count>=2,1,0)) buyTwiceLast,
sum(if(mn.order_count>=2,1,0))/sum( if(mn.order_count>=1,1,0)) buyTwiceLastRatio,
sum(if(mn.order_count>=3,1,0)) buy3timeLast ,
sum(if(mn.order_count>=3,1,0))/sum( if(mn.order_count>=1,1,0)) buy3timeLastRatio,
date_format('$db_date' ,'yyyy-MM') stat_mn,
'$db_date' stat_date
from
(
select
user_id,
sd.sku_tm_id,
sd.sku_category1_id,
sd.sku_category1_name,
sum(order_count) order_count
from dws.mall__sale_detail_daycount sd
where date_format(dt,'yyyy-MM')=date_format('$db_date' ,'yyyy-MM')
group by user_id, sd.sku_tm_id, sd.sku_category1_id, sd.sku_category1_name
) mn
group by mn.sku_tm_id, mn.sku_category1_id, mn.sku_category1_name;
"
$hive -e "$sql"
来源:oschina
链接:https://my.oschina.net/u/4274162/blog/4338852