https://zhuanlan.zhihu.com/p/50101525
本文分析Rust标准库中的channel,channel(通道)作为线程间通信的一种方式被广泛使用。
Rust提供了多生产者单消费者的channel。我们重点关注多个生产者的情况。
它的实现方式非常有趣。我把它分为通道升级跟并发队列两部分。
本文描述通道升级
对于一个channel()调用,我们得到的(sender, receiver)是oneshot的,这一点从源码可以得到暗示:
#[stable(feature = "rust1", since = "1.0.0")] pub fn channel<T>() -> (Sender<T>, Receiver<T>) { let a = Arc::new(oneshot::Packet::new()); (Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a))) }
这里至少有四个结构:
- oneshot::Packet:Packet,真正存放数据的地方。此处是单个数据(其他类型可能使用队列)
- Flavor::Oneshot。
- Sender/Receiver。
我们分别看下他们的数据结构源码,首先是oneshot::Packet,它位于mpsc/oneshot.rs:
pub struct Packet<T> { // Internal state of the chan/port pair (stores the blocked thread as well) state: AtomicUsize, // One-shot data slot location data: UnsafeCell<Option<T>>, // when used for the second time, a oneshot channel must be upgraded, and // this contains the slot for the upgrade upgrade: UnsafeCell<MyUpgrade<T>>, }
可以看出data是为一个数据准备的。upgrade字段用于通道升级。
另外还有其他类型的Packet,查看同一文件夹发现有shared::Packet/stream::Packet/sync::Packet,他们分别位于shared.rs/stream.rs/sync.rs中。我们重点关注shared::Packet:
pub struct Packet<T> { queue: mpsc::Queue<T>, cnt: AtomicIsize, // How many items are on this channel steals: UnsafeCell<isize>, // How many times has a port received without blocking? to_wake: AtomicUsize, // SignalToken for wake up // The number of channels which are currently using this packet. channels: AtomicUsize, // See the discussion in Port::drop and the channel send methods for what // these are used for port_dropped: AtomicBool, sender_drain: AtomicIsize, // this lock protects various portions of this implementation during // select() select_lock: Mutex<()>, }
清楚地看到queue字段,它用于存放数据。我们先不关注数据字段。
对于这四个类型的Packet,标准库提供了enun Flavor<T>来做区分:
enum Flavor<T> { Oneshot(Arc<oneshot::Packet<T>>), Stream(Arc<stream::Packet<T>>), Shared(Arc<shared::Packet<T>>), Sync(Arc<sync::Packet<T>>), }
而我们的Sender/Receiver对象则非常简单地通过存储Flavor<T>来关联到Packet:
pub struct Sender<T> { inner: UnsafeCell<Flavor<T>>, } pub struct Receiver<T> { inner: UnsafeCell<Flavor<T>>, }
我们再看一下fn channel:
pub fn channel<T>() -> (Sender<T>, Receiver<T>) { let a = Arc::new(oneshot::Packet::new()); (Sender::new(Flavor::Oneshot(a.clone())), Receiver::new(Flavor::Oneshot(a))) }
就可以了解到Sender/Receiver里面都存了Flavor,根据Flavor的类型区分Packet的类型,同时Packet作为共享数据被安全地共享。
这就是我们调用channel得到的结果。因为我们重点关注多生产者的情况,所以我们再看一下Clone for Sender的实现:
impl<T> Clone for Sender<T> { fn clone(&self) -> Sender<T> { let packet = match *unsafe { self.inner() } { Flavor::Oneshot(ref p) => { let a = Arc::new(shared::Packet::new()); { let guard = a.postinit_lock(); let rx = Receiver::new(Flavor::Shared(a.clone())); let sleeper = match p.upgrade(rx) { oneshot::UpSuccess | oneshot::UpDisconnected => None, oneshot::UpWoke(task) => Some(task), }; a.inherit_blocker(sleeper, guard); } a } Flavor::Stream(ref p) => { let a = Arc::new(shared::Packet::new()); { let guard = a.postinit_lock(); let rx = Receiver::new(Flavor::Shared(a.clone