问题
I want to use unique
in groupby
aggregation, but I don't want nan
in the unique
result.
An example dataframe:
df = pd.DataFrame({'a': [1, 2, 1, 1, pd.np.nan, 3, 3], 'b': [0,0,1,1,1,1,1],
'c': ['foo', pd.np.nan, 'bar', 'foo', 'baz', 'foo', 'bar']})
a b c
0 1.0000 0 foo
1 2.0000 0 NaN
2 1.0000 1 bar
3 1.0000 1 foo
4 nan 1 baz
5 3.0000 1 foo
6 3.0000 1 bar
And the groupby
:
df.groupby('b').agg({'a': ['min', 'max', 'unique'], 'c': ['first', 'last', 'unique']})
It's result is:
a c
min max unique first last unique
b
0 1.0000 2.0000 [1.0, 2.0] foo foo [foo, nan]
1 1.0000 3.0000 [1.0, nan, 3.0] bar bar [bar, foo, baz]
But I want it without nan
:
a c
min max unique first last unique
b
0 1.0000 2.0000 [1.0, 2.0] foo foo [foo]
1 1.0000 3.0000 [1.0, 3.0] bar bar [bar, foo, baz]
How can I do that? Of course I have several columns to aggregate and every column needs different aggregation functions, so I don't want to do the unique
aggregations one-by-one and separately from other aggregations.
Thank you!
回答1:
Try ffill
df.ffill().groupby('b').agg({'a': ['min', 'max', 'unique'], 'c': ['first', 'last', 'unique']})
c a first last unique min max unique b 0 foo foo [foo] 1.0 2.0 [1.0, 2.0] 1 bar bar [bar, foo, baz] 1.0 3.0 [1.0, 3.0]
If Nan is the first element of the group then the above solution breaks. @IanS
's solution is better in the long run.
回答2:
Define a function:
def unique_non_null(s):
return s.dropna().unique()
Then use it in the aggregation:
df.groupby('b').agg({
'a': ['min', 'max', unique_non_null],
'c': ['first', 'last', unique_non_null]
})
Or :
df.dropna().groupby('b').agg({'a': ['min', 'max', 'unique'], 'c': ['first', 'last', 'unique']})
回答3:
This will work for what you need:
df.fillna(method='ffill').groupby('b').agg({'a': ['min', 'max', 'unique'], 'c': ['first', 'last', 'unique']})
Because you use min
, max
and unique
repeated values do not concern you.
来源:https://stackoverflow.com/questions/46218652/python-pandas-unique-value-ignoring-nan