问题
I am trying to re-create the prediction of a trained model but I don't know how to save a model. For example, I want to save the trained Gaussian processing regressor model and recreate the prediction after I trained the model. The package I used to train model is scikit-learn.
kernel = DotProduct() + WhiteKernel()
gpr = GaussianProcessRegressor(kernel=kernel,random_state=0)
gpr.fit(X,y)
回答1:
You can use:
1. pickle
from sklearn import svm
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf = svm.SVC()
clf.fit(X, y)
##########################
# SAVE-LOAD using pickle #
##########################
import pickle
# save
with open('model.pkl','wb') as f:
pickle.dump(clf,f)
# load
with open('model.pkl', 'rb') as f:
clf2 = pickle.load(f)
clf2.predict(X[0:1])
2. joblib
From scikit-learn documentation:
In the specific case of scikit-learn, it may be better to use joblib’s replacement of pickle (dump & load), which is more efficient on objects that carry large numpy arrays internally as is often the case for fitted scikit-learn estimators, but can only pickle to the disk and not to a string:
from sklearn import svm
from sklearn import datasets
iris = datasets.load_iris()
X, y = iris.data, iris.target
clf = svm.SVC()
clf.fit(X, y)
##########################
# SAVE-LOAD using joblib #
##########################
import joblib
# save
joblib.dump(clf, "model.pkl")
# load
clf2 = joblib.load("model.pkl")
clf2.predict(X[0:1])
回答2:
You can save and load the model using the pickle operation to serialize your machine learning algorithms and save the serialized format to a file.
import pickle
# save the model to disk
filename = 'gpr_model.sav'
pickle.dump(gpr, open(filename, 'wb'))
# load the model from disk
loaded_model = pickle.load(open(filename, 'rb'))
Hope it helps!
source
来源:https://stackoverflow.com/questions/56107259/how-to-save-a-trained-model-by-scikit-learn