Why agg() in PySpark is only able to summarize one column at a time? [duplicate]

断了今生、忘了曾经 提交于 2020-07-04 13:49:12

问题


For the below dataframe

df=spark.createDataFrame(data=[('Alice',4.300),('Bob',7.677)],schema=['name','High'])

When I try to find min & max I am only getting min value in output.

df.agg({'High':'max','High':'min'}).show()
+-----------+
|min(High)  |
+-----------+
|    2094900|
+-----------+

Why can't agg() give both max & min like in Pandas?


回答1:


As you can see here:

agg(*exprs)

Compute aggregates and returns the result as a DataFrame.

The available aggregate functions are avg, max, min, sum, count.

If exprs is a single dict mapping from string to string, then the key is the column to perform aggregation on, and the value is the aggregate function.

Alternatively, exprs can also be a list of aggregate Column expressions.

Parameters: exprs – a dict mapping from column name (string) to aggregate functions (string), or a list of Column.

You can use a list of column and apply the function that you need on every column, like this:

>>> from pyspark.sql import functions as F

>>> df.agg(F.min(df.High),F.max(df.High),F.avg(df.High),F.sum(df.High)).show()
+---------+---------+---------+---------+
|min(High)|max(High)|avg(High)|sum(High)|
+---------+---------+---------+---------+
|      4.3|    7.677|   5.9885|   11.977|
+---------+---------+---------+---------+


来源:https://stackoverflow.com/questions/44384102/why-agg-in-pyspark-is-only-able-to-summarize-one-column-at-a-time

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!