问题
I am trying to create a multible voigt/Gaussian/Lorentizan-peak fit function with lmfit. Therefore, I wrote the following Function:
def apply_fit_mix_multy(data,modelPeak,peakPos,amplitud,**kwargs):
peakPos=np.array(peakPos)
Start=kwargs.get('Start',data[0,0])
length_data=len(data)-1
End=kwargs.get('End',data[length_data,0])
StartPeak=kwargs.get('StartPeak',data[0,0])
EndPeak=kwargs.get('EndPeak',data[length_data,0])
BackFunc=kwargs.get('BackFunc',False)
BackCut=kwargs.get('BackCut',False)
dataN=data_intervall(data,Start,End)
y=dataN[:, 1]
x=dataN[:, 0]
amplitud=amplitud
center=peakPos
mod = None
for i in range(len(peakPos)):
this_mod = make_model(i,amplitud,center,modelPeak)
if mod is None:
mod = this_mod
else:
mod = mod + this_mod
bgy=[list() for f in range(len(x))]
if(BackFunc==True):
bg,bgx=BackFunc
for i in range(len(x)):
bgy[i]=bg.best_values.get('c')
elif(BackCut!=False):
slope,intercept=back_ground_cut(data,BackCut[0],BackCut[1])
for i in range(len(x)):
bgy[i]=slope*x[i]+intercept
if(BackCut!=False):
print('Background substraction model is used! (Sign=Sign-backgr(linear between two points))')
y=y-bgy
out = mod.fit(y, x=x)
else:
print('Combination model is used! (offset+Gauss/Lor/Voig)')
offset=ConstantModel()
mod=mod+offset
out = mod.fit(y, x=x)#out is the fitted function
area=[list() for f in range(len(peakPos))]
comps=out.eval_components(x=x)
if(BackCut!=False):
for i in range(len(peakPos)):
area[i]=simps(comps['peak'+str(i)+'_'],x=x,even='avg')-simps(bgy,x=x,even='avg')
fit_dict={'signal':y, 'convol':out.best_fit,'x':x,'peak_area':area,'backgr':bgy,'comps':comps}
else:
for i in range(len(peakPos)):
area[i]=simps(comps['peak'+str(i)+'_'],x=x,even='avg')
fit_dict={'convol':out.best_fit,'x':x,'peak_area':area,'comps':comps} #comps is inf. of sperate peaks
return fit_dict
The function reads in a data set, the modelPeak (e.g. GaussianModel) an initial guess of peak positions and amplitudes (peakPos, amplitude) .
In the first Part I initializing the model of the peaks (how many peaks...)
for i in range(len(peakPos)):
this_mod = make_model(i,amplitud,center,modelPeak)
if mod is None:
mod = this_mod
else:
mod = mod + this_mod
With the make_model funktion:
def make_model(num,amplitud,center,mod):
pref = "peak{0}_".format(num)
model = mod(prefix = pref)
model.set_param_hint(pref+'amplitud', value=amplitud[num], min=0, max=5*amplitud[num])
model.set_param_hint(pref+'center', value=center[num], min=center[num]-0.5, max=center[num]+0.5)
if(num==0):
model.set_param_hint(pref+'sigma', value=0.3, min=0.01, max=1)
else:
model.set_param_hint(pref+'sigma', value=0.3, min=0.01, max=1)
#print('Jetzt',center[num],amplitud[num])
return model
here is now my Problem: I I whant to fit e.g. 3 Peaks I whant that e.g. the sigma of the first peak is varies during the fit while the sigmas of the other peaks depend on the sigma of the first peak! any idea? thx maths
FYI this is how a fit looks like: enter image description here
回答1:
If I understand your long question (it would be helpful to remove the extraneous stuff - and there is quite a lot of it), you want to create a Model
with multiple peaks, allowing sigma
from the 1st peak to vary freely, and constraining sigma
for the other peaks to depend on this.
To do that, you can either use parameter hints (as you use in your make_model()
function) or set expressions for the parameters after the Parameters object is created. For the first approach, something like this
def make_model(num,amplitud,center,mod):
pref = "peak{0}_".format(num)
model = mod(prefix = pref)
model.set_param_hint(pref+'amplitud', value=amplitud[num], min=0, max=5*amplitud[num])
model.set_param_hint(pref+'center', value=center[num], min=center[num]-0.5, max=center[num]+0.5)
if(num==0):
model.set_param_hint(pref+'sigma', value=0.3, min=0.01, max=1)
else:
## instead of
# model.set_param_hint(pref+'sigma', value=0.3, min=0.01, max=1)
## set peakN_sigma == peak0_sigma
model.set_param_hint(pref+'sigma', expr='peak0_sigma')
## or maybe set peakN_sigma == N * peak0_sigma
model.set_param_hint(pref+'sigma', expr='%d*peak0_sigma' % num)
return model
You could also make the full model (simplified somewhat from your code, but the same idea):
model = (VoigtModel(prefix='peak0_') + VoigtModel(prefix='peak1_') +
VoigtModel(prefix='peak2_') + LinearModel(prefix='const_'))
# create parameters with default values
params = model.make_params(peak0_amplitude=10, peak0_sigma=2, ....)
# set constraints for `sigma` params:
params['peak1_sigma'].expr = 'peak0_sigma'
params['peak2_sigma'].expr = 'peak0_sigma'
# similarly, set bounds as needed:
params['peak1_sigma'].min = 0
params['peak1_amplitude'].min = 0
Hope that helps...
来源:https://stackoverflow.com/questions/50236362/different-constraints-for-fit-parameter-in-lmfit-model