问题
I am trying to sample around 1000 points from a 3-D ellipsoid, uniformly. Is there some way to code it such that we can get points starting from the equation of the ellipsoid?
I want points on the surface of the ellipsoid.
回答1:
Here is a generic function to pick a random point on a surface of a sphere, spheroid or any triaxial ellipsoid with a, b and c parameters. Note that generating angles directly will not provide uniform distribution and will cause excessive population of points along z direction. Instead, phi is obtained as an inverse of randomly generated cos(phi).
import numpy as np
def random_point_ellipsoid(a,b,c):
u = np.random.rand()
v = np.random.rand()
theta = u * 2.0 * np.pi
phi = np.arccos(2.0 * v - 1.0)
sinTheta = np.sin(theta);
cosTheta = np.cos(theta);
sinPhi = np.sin(phi);
cosPhi = np.cos(phi);
rx = a * sinPhi * cosTheta;
ry = b * sinPhi * sinTheta;
rz = c * cosPhi;
return rx, ry, rz
This function is adopted from this post: https://karthikkaranth.me/blog/generating-random-points-in-a-sphere/
回答2:
Consider using Monte-Carlo simulation: generate a random 3D point; check if the point is inside the ellipsoid; if it is, keep it. Repeat until you get 1,000 points.
P.S. Since the OP changed their question, this answer is no longer valid.
回答3:
J.F. Williamson, "Random selection of points distributed on curved surfaces", Physics in Medicine & Biology 32(10), 1987, describes a general method of choosing a uniformly random point on a parametric surface. It is an acceptance/rejection method that accepts or rejects each candidate point depending on its stretch factor (norm-of-gradient). To use this method for a parametric surface, several things have to be known about the surface, namely—
x(u, v)
,y(u, v)
andz(u, v)
, which are functions that generate 3-dimensional coordinates from two dimensional coordinatesu
andv
,The ranges of
u
andv
,g(point)
, the norm of the gradient ("stretch factor") at each point on the surface, andgmax
, the maximum value ofg
for the entire surface.
The algorithm is then:
- Generate a point on the surface,
xyz
. - If
g(xyz) >= RNDU01()*gmax
, whereRNDU01()
is a random number in [0, 1), accept the point. Otherwise, repeat this process.
Chen and Glotzer (2007) apply the method to the surface of a prolate spheroid (one form of ellipsoid) in "Simulation studies of a phenomenological model for elongated virus capsid formation", arXiv: cond-mat/0701125 [cond-mat.soft].
来源:https://stackoverflow.com/questions/56404399/how-to-generate-a-random-sample-of-points-from-a-3-d-ellipsoid-using-python