问题
I have the following data.frame:
grp nr yr
1: A 1.0 2009
2: A 2.0 2009
3: A 1.5 2009
4: A 1.0 2010
5: B 3.0 2009
6: B 2.0 2010
7: B NA 2011
8: C 3.0 2014
9: C 3.0 2019
10: C 3.0 2020
11: C 4.0 2021
Desired output:
grp nr yr nr_roll_period_3
1 A 1.0 2009 NA
2 A 2.0 2009 NA
3 A 1.5 2009 NA
4 A 1.0 2010 NA
5 B 3.0 2009 NA
6 B 2.0 2010 NA
7 B NA 2011 NA
8 C 3.0 2014 NA
9 C 3.0 2019 NA
10 C 3.0 2020 NA
11 C 4.0 2021 3.333333
The logic:
- I want to calculate a rolling mean for the period of length k (let's say 3), where 3 includes the current month/year/day (by group)
- However, this shouldn't calculate anything where there is no 3 consecutive years/months/days
- Likewise, whenever there is NA in the column for calculation within this period, the output should be NA.
Currently I have this function:
calculate_rolling_window <-
function(dt, date_col, calc_col, id, k) {
require(data.table)
return(setDT(dt)[
, paste(calc_col, "roll_period", k, sep = "_") :=
sapply(get(date_col), function(x) mean(get(calc_col)[between(get(date_col), x - k + 1, x)])),
by = mget(id)])
}
It works fine for the regular cases, where there is no duplicates in the date column. However, with duplicates it fails:
grp nr yr nr_roll_period_3
1: A 1.0 2009 1.500000
2: A 2.0 2009 1.500000
3: A 1.5 2009 1.500000
4: A 1.0 2010 1.375000
5: B 3.0 2009 NA
6: B 2.0 2010 NA
7: B NA 2011 NA
8: C 3.0 2014 NA
9: C 3.0 2019 NA
10: C 3.0 2020 NA
11: C 4.0 2021 3.333333
Any ideas on how to handle this? No need for exclusively data.table
approach.
回答1:
This can be solved by grouping in a non-equi join to aggregate over a rolling window of length k
, filtering for k
consecutive years, and an update join:
library(data.table)
k <- 3L
# group by join parameters of a non-equi join
mDT <- setDT(DT)[.(grp = grp, upper = yr, lower = yr - k),
on = .(grp, yr <= upper, yr > lower),
.(uniqueN(x.yr), mean(nr)), by = .EACHI]
# update join with filtered intermediate result
DT[mDT[V1 == k], on = .(grp, yr), paste0("nr_roll_period_", k) := V2]
DT
which returns OP's expected result:
grp nr yr nr_roll_period 1: A 1.0 2009 NA 2: A 2.0 2009 NA 3: A 1.5 2009 NA 4: A 1.0 2010 NA 5: B 3.0 2009 NA 6: B 2.0 2010 NA 7: B NA 2011 NA 8: C 3.0 2014 NA 9: C 3.0 2019 NA 10: C 3.0 2020 NA 11: C 4.0 2021 3.333333
The intermediate result mDT
contains the rolling mean V2
over k
periods and the count of unique/distinct years V1
within each period. It is created by a non-equi join of DT
with a data.table containing the upper and lower bounds which is created on-the-fly by .(grp = grp, upper = yr, lower = yr - k)
.
mDT
grp yr yr V1 V2 1: A 2009 2006 1 1.500000 2: A 2009 2006 1 1.500000 3: A 2009 2006 1 1.500000 4: A 2010 2007 2 1.375000 5: B 2009 2006 1 3.000000 6: B 2010 2007 2 2.500000 7: B 2011 2008 3 NA 8: C 2014 2011 1 3.000000 9: C 2019 2016 1 3.000000 10: C 2020 2017 2 3.000000 11: C 2021 2018 3 3.333333
This is filtered for rows which contain exactly k
distinct years:
mDT[V1 == k]
grp yr yr V1 V2 1: B 2011 2008 3 NA 2: C 2021 2018 3 3.333333
Finally, this is joined with DT
to append the new column to DT
.
Note, that mean()
returns NA
by default if there is an NA
in the input data.
Data
library(data.table)
DT <- fread(text = "rn grp nr yr
1: A 1.0 2009
2: A 2.0 2009
3: A 1.5 2009
4: A 1.0 2010
5: B 3.0 2009
6: B 2.0 2010
7: B NA 2011
8: C 3.0 2014
9: C 3.0 2019
10: C 3.0 2020
11: C 4.0 2021", drop = 1L)
来源:https://stackoverflow.com/questions/52725965/rolling-window-function-for-irregular-time-series-that-can-handle-duplicates