多线程
一、并发与并行
- 并发:指两个或多个事件在同一个时间段内发生。
- 并行:指两个或多个事件在同一时刻发生(同时发生)。
在操作系统中,安装了多个程序,并发指的是在一段时间内宏观上有多个程序同时运行,这在单 CPU 系统中,每一时刻只能有一道程序执行,即微观上这些程序是分时的交替运行,只不过是给人的感觉是同时运行,那是因为分时交替运行的时间是非常短的。
而在多个 CPU 系统中,则这些可以并发执行的程序便可以分配到多个处理器上(CPU),实现多任务并行执行,即利用每个处理器来处理一个可以并发执行的程序,这样多个程序便可以同时执行。目前电脑市场上说的多核 CPU,便是多核处理器,核越多,并行处理的程序越多,能大大的提高电脑运行的效率。
注意:单核处理器的计算机肯定是不能并行的处理多个任务的,只能是多个任务在单个CPU上并发运行。同理,线程也是一样的,从宏观角度上理解线程是并行运行的,但是从微观角度上分析却是串行运行的,即一个线程一个线程的去运行,当系统只有一个CPU时,线程会以某种顺序执行多个线程,我们把这种情况称之为线程调度。
二、线程与进程
进程:是指一个内存中运行的应用程序,每个进程都有一个独立的内存空间,一个应用程序可以同时运行多个进程;进程也是程序的一次执行过程,是系统运行程序的基本单位;系统运行一个程序即是一个进程从创建、运行到消亡的过程。
线程:线程是进程中的一个执行单元,负责当前进程中程序的执行,一个进程中至少有一个线程。一个进程中是可以有多个线程的,这个应用程序也可以称之为多线程程序。
简而言之:一个程序运行后至少有一个进程,一个进程中可以包含多个线程
我们可以再电脑底部任务栏,右键—>打开任务管理器,可以查看当前任务的进程:
进程
线程
线程调度:
分时调度
所有线程轮流使用 CPU 的使用权,平均分配每个线程占用 CPU 的时间。
抢占式调度
优先让优先级高的线程使用 CPU,如果线程的优先级相同,那么会随机选择一个(线程随机性),Java使用的为抢占式调度。
设置线程的优先级
抢占式调度详解
大部分操作系统都支持多进程并发运行,现在的操作系统几乎都支持同时运行多个程序。比如:现在我们上课一边使用编辑器,一边使用录屏软件,同时还开着画图板,dos窗口等软件。此时,这些程序是在同时运行,”感觉这些软件好像在同一时刻运行着“。
实际上,CPU(中央处理器)使用抢占式调度模式在多个线程间进行着高速的切换。对于CPU的一个核而言,某个时刻,只能执行一个线程,而 CPU的在多个线程间切换速度相对我们的感觉要快,看上去就是在同一时刻运行。
其实,多线程程序并不能提高程序的运行速度,但能够提高程序运行效率,让CPU的使用率更高。
三、创建线程类
Java使用java.lang.Thread
类代表线程,所有的线程对象都必须是Thread类或其子类的实例。每个线程的作用是完成一定的任务,实际上就是执行一段程序流,即一段顺序执行的代码。Java使用线程执行体来代表这段程序流。Java中通过继承Thread类来创建并启动多线程的步骤如下:
- 定义Thread类的子类,并重写该类的run()方法,该run()方法的方法体就代表了线程需要完成的任务,因此把run()方法称为线程执行体。
- 创建Thread子类的实例,即创建了线程对象
- 调用线程对象的start()方法来启动该线程
代码如下:
测试类:
public class Demo01 { public static void main(String[] args) { // 创建自定义线程对象 MyThread mt = new MyThread("新的线程!"); // 开启新线程 mt.start(); // 在主方法中执行for循环 for (int i = 0; i < 10; i++) { System.out.println("main线程!" + i); } } }
自定义线程类:
public class MyThread extends Thread { // 定义指定线程名称的构造方法 public MyThread(String name) { // 调用父类的String参数的构造方法,指定线程的名称 super(name); } /** * 重写run方法,完成该线程执行的逻辑 */ @Override public void run() { for (int i = 0; i < 10; i++) { System.out.println(getName() + ":正在执行!" + i); } } }
四、多线程原理
先画个多线程执行时序图,来体现一下多线程程序的执行流程。
代码如下:
自定义线程类:
public class MyThread extends Thread { /* * 利用继承中的特点 将线程名称传递 进行设置 */ public MyThread(String name) { super(name); } /* * 重写run方法 定义线程要执行的代码 */ public void run() { for (int i = 0; i < 20; i++) { // getName()方法 来自父亲 System.out.println(getName() + i); } } }
测试类:
public class Demo { public static void main(String[] args) { System.out.println("这里是main线程"); MyThread mt = new MyThread("小强"); mt.start();// 开启了一个新的线程 for (int i = 0; i < 20; i++) { System.out.println("旺财:" + i); } } }
流程图:
程序启动运行main时候,java虚拟机启动一个进程,主线程main在main()调用时候被创建。随着调用mt的对象的
start方法,另外一个新的线程也启动了,这样,整个应用就在多线程下运行。
通过这张图我们可以很清晰的看到多线程的执行流程,那么为什么可以完成并发执行呢?我们再来讲一讲原理。
多线程执行时,到底在内存中是如何运行的呢?以上个程序为例,进行图解说明:
多线程执行时,在栈内存中,其实每一个执行线程都有一片自己所属的栈内存空间。进行方法的压栈和弹栈。
当执行线程的任务结束了,线程自动在栈内存中释放了。但是当所有的执行线程都结束了,那么进程就结束了。
五、Thread类
构造方法
public Thread()
:分配一个新的线程对象。public Thread(String name)
:分配一个指定名字的新的线程对象。public Thread(Runnable target)
:分配一个带有指定目标新的线程对象。public Thread(Runnable target, String name)
:分配一个带有指定目标新的线程对象并指定名字。
常用方法
public final String getName()
:获取当前线程名称。public final void setName(String name)
:设置当前线程名称。public void start()
:使线程开始执行;Java虚拟机调用此线程的run方法。public void run()
:此线程要执行的任务在此处定义代码。public static void sleep(long millis)
:使当前正在执行的线程以指定的毫秒数暂停(暂时停止执行),不释放锁。public static Thread currentThread()
:返回对当前正在执行的线程对象的引用。public final void setPriority(int newPriority)
:更改线程的优先级。public final int getPriority()
:获取线程的优先级。public Thread.State getState()
:获取该线程的状态。public void join()
:等待该线程终止。(可理解为 强行插入)public void join(long millis)
:等待该线程终止的时间最长为 millis 毫秒。public final boolean isAlive()
:测试线程是否处于活动状态。如果线程已经启动且尚未终止,则为活动状态。public static void yield()
:暂停当前正在执行的线程对象,并执行其他线程。(可理解为 谦让)
翻阅API后得知创建线程的方式总共有两种,一种是继承Thread类方式,一种是实现Runnable接口方式,方式一前面已经说明,接下来是方式二实现的方式。
六、创建线程方式二
静态代理
代理(Proxy)是一种设计模式,提供了对目标对象另外的访问方式;
即通过代理对象访问目标对象。这样做的好处是:可以在目标对象实现的基础上,增强额外的功能操作,即扩展目标对象的功能。
代理模式的关键点是:代理对象与目标对象。代理对象是对目标对象的扩展,并会调用目标对象。
举个例子来说明代理的作用:假设我们想邀请一位明星,那么并不是直接联系明星,而是联系明星的经纪人,来达到同样的目的。明星就是一个目标对象,他只要负责活动中的节目,而其他琐碎的事情就交给他的代理人(经纪人)来解决。
- 抽象角色:通过接口或抽象类声明真实角色实现的业务方法。
- 代理角色:实现抽象角色,是真实角色的代理,通过真实角色的业务逻辑方法来实现抽象方法,并可以附加自己的操作。
- 真实角色:实现抽象角色,定义真实角色所要实现的业务逻辑,供代理角色调用。
使用静态代理创建线程
采用 java.lang.Runnable
也是非常常见的一种,我们只需要重写run方法即可。
步骤如下:
- 定义Runnable接口的实现类,并重写该接口的run()方法,该run()方法的方法体同样是该线程的线程执行体。
- 创建Runnable实现类的实例,并以此实例作为Thread的target来创建Thread对象,该Thread对象才是真正的线程对象。
- 调用线程对象的start()方法来启动线程。
代码如下:
public class MyRunnable implements Runnable { @Override public void run() { for (int i = 0; i < 20; i++) { System.out.println(Thread.currentThread().getName() + " " + i); } } }
public class Demo { public static void main(String[] args) { // 创建自定义类对象 线程任务对象 MyRunnable mr = new MyRunnable(); // 创建线程对象 Thread t = new Thread(mr, "小强"); t.start(); for (int i = 0; i < 20; i++) { System.out.println("旺财 " + i); } } }
通过实现Runnable接口,使得该类有了多线程类的特征。run()方法是多线程程序的一个执行目标。所有的多线程
代码都在run方法里面。Thread类实际上也是实现了Runnable接口的类。
在启动的多线程的时候,先通过Thread类的构造方法Thread(Runnable target) 构造出对象,然后调用Thread
对象的start()方法来运行多线程代码。
实际上所有的多线程代码都是通过运行Thread的start()方法来运行的。因此,不管是继承Thread类还是实现
Runnable接口来实现多线程,最终还是通过Thread的对象的API来控制线程的,熟悉Thread类的API是进行多线程
编程的基础。
Tips:Runnable对象仅仅作为Thread对象的target,Runnable实现类里包含的run()方法仅作为线程执行体。而实际的线程对象依然是Thread实例,只是该Thread线程负责执行其target的run()方法。
七、Thread和Runnable的区别
如果一个类继承Thread,则不适合资源共享。但是如果实现了Runable接口的话,则很容易的实现资源共享。
总结:
实现Runnable接口比继承Thread类所具有的优势:
- 适合多个相同的程序代码的线程去共享同一个资源。
- 可以避免java中的单继承的局限性。
- 增加程序的健壮性,实现解耦操作,代码可以被多个线程共享,代码和线程独立。
- 线程池只能放入实现Runable或Callable类线程,不能直接放入继承Thread的类。
扩充:在java中,每次程序运行至少启动2个线程。一个是main线程,一个是垃圾收集线程。因为每当使用 java 命令执行一个类的时候,实际上都会启动一个JVM,每一个JVM其实在就是在操作系统中启动了一个进程。
八、匿名内部类方式实现线程的创建
使用线程的内匿名内部类方式,可以方便的实现每个线程执行不同的线程任务操作。
使用匿名内部类的方式实现Runnable接口,重新Runnable接口中的run方法:
public class NoNameInnerClassThread { public static void main(String[] args) { Runnable r = new Runnable() { public void run() { for (int i = 0; i < 20; i++) { System.out.println("小强:" + i); } } }; new Thread(r).start(); for (int i = 0; i < 20; i++) { System.out.println("旺财:" + i); } } }
线程安全
一、线程安全
如果有多个线程在同时运行,而这些线程可能会同时运行这段代码。程序每次运行结果和单线程运行的结果是一样的,而且其他的变量的值也和预期的是一样的,就是线程安全的。
我们通过一个案例,演示线程的安全问题:
电影院要卖票,我们模拟电影院的卖票过程。假设要播放的电影是 “葫芦娃大战奥特曼”,本次电影的座位共100个(本场电影只能卖100张票)。
我们来模拟电影院的售票窗口,实现多个窗口同时卖 “葫芦娃大战奥特曼”这场电影票(多个窗口一起卖这100张票)。需要窗口,采用线程对象来模拟;需要票,Runnable接口子类来模拟。
模拟票:
public class Ticket implements Runnable { private int ticket = 100; /* * 执行卖票操作 */ @Override public void run() { // 每个窗口卖票的操作 // 窗口永远开启 while (true) { if (ticket > 0) {// 有票可以卖 // 出票操作 // 使用sleep模拟一下出票时间 try { Thread.sleep(100); } catch (InterruptedException e) { e.printStackTrace(); } // 获取当前线程对象的名字 String name = Thread.currentThread().getName(); System.out.println(name + "正在卖:" + ticket--); } } } }
测试类:
public class Demo { public static void main(String[] args) { // 创建线程任务对象 Ticket ticket = new Ticket(); // 创建三个窗口对象 Thread t1 = new Thread(ticket, "窗口1"); Thread t2 = new Thread(ticket, "窗口2"); Thread t3 = new Thread(ticket, "窗口3"); // 同时卖票 t1.start(); t2.start(); t3.start(); } }
结果中有一部分这样现象:
发现程序出现了两个问题:
- 相同的票数,比如2这张票被卖了两回。
- 不存在的票,比如0票与-1票,是不存在的。
这种问题,几个窗口(线程)票数不同步了,这种问题称为线程不安全。
线程安全问题都是由全局变量及静态变量引起的。若每个线程中对全局变量、静态变量只有读操作,而无写操作,一般来说,这个全局变量是线程安全的;若有多个线程同时执行写操作,一般都需要考虑线程同步,否则的话就可能影响线程安全。
二、线程同步
当我们使用多个线程访问同一资源的时候,且多个线程中对资源有写的操作,就容易出现线程安全问题。
要解决上述多线程并发访问一个资源的安全性问题:也就是解决重复票与不存在票问题,Java中提供了同步机制(synchronized)来解决。
根据案例简述:
窗口1线程进入操作的时候,窗口2和窗口3线程只能在外等着,窗口1操作结束,窗口1和窗口2和窗口3才有机会进入代码去执行。也就是说在某个线程修改共享资源的时候,其他线程不能修改该资源,等待修改完毕同步之后,才能去抢夺CPU资源,完成对应的操作,保证了数据的同步性,解决了线程不安全的现象。
为了保证每个线程都能正常执行原子操作,Java引入了线程同步机制。
那么怎么去使用呢?有三种方式完成同步操作:
- 同步代码块。
- 同步方法。
- 锁机制。
三、同步代码块
- 同步代码块:
synchronized
关键字可以用于方法中的某个区块中,表示只对这个区块的资源实行互斥访问。
格式:
synchronized(同步锁){ 需要同步操作的代码 }
同步锁(也叫对象锁,或对象监视器):
对象的同步锁只是一个概念,可以想象为在对象上标记了一个锁。
- 锁对象 可以是任意类型。
- 多个线程对象 要使用同一把锁。
注意:在任何时候,最多允许一个线程拥有同步锁,谁拿到锁就进入代码块,其他的线程只能在外等着 (BLOCKED)。
使用同步代码块解决代码:
public class Ticket implements Runnable { private int ticket = 100; Object lock = new Object(); /* * 执行卖票操作 */ @Override public void run() { // 每个窗口卖票的操作 // 窗口 永远开启 while (true) { synchronized (lock) { if (ticket > 0) {// 有票 可以卖 // 出票操作 // 使用sleep模拟一下出票时间 try { Thread.sleep(50); } catch (InterruptedException e) { // TODO Auto‐generated catch block e.printStackTrace(); } // 获取当前线程对象的名字 String name = Thread.currentThread().getName(); System.out.println(name + "正在卖:" + ticket--); } } } } }
当使用了同步代码块后,上述的线程的安全问题,解决了。
四、 同步方法
- 同步方法 :使用
synchronized
修饰的方法,就叫做同步方法,保证A线程执行该方法的时候,其他线程只能在方法外等着。
格式:
public synchronized void method(){ 可能会产生线程安全问题的代码 }
同步锁是谁?
对于非static方法,同步锁就是this。
对于static方法,我们使用当前方法所在类的字节码对象(类名.class)。
使用同步方法代码如下:
public class Ticket implements Runnable { private int ticket = 100; /* * 执行卖票操作 */ @Override public void run() { // 每个窗口卖票的操作 // 窗口 永远开启 while (true) { sellTicket(); } } /* * 锁对象 是 谁调用这个方法 就是谁 隐含 锁对象 就是 this * */ public synchronized void sellTicket() { if (ticket > 0) {// 有票 可以卖 // 出票操作 // 使用sleep模拟一下出票时间 try { Thread.sleep(100); } catch (InterruptedException e) { // TODO Auto‐generated catch block e.printStackTrace(); } // 获取当前线程对象的名字 String name = Thread.currentThread().getName(); System.out.println(name + "正在卖:" + ticket--); } } }
五、Lock锁
java.util.concurrent.locks.Lock
机制提供了比 synchronized 代码块和synchronized 方法更广泛的锁定操作,同步代码块/同步方法具有的功能Lock都有,除此之外更强大,更体现面向对象。
Lock锁也称同步锁,加锁与释放锁方法化了,如下:
public void lock()
:加同步锁。public void unlock()
:释放同步锁。
使用如下:
import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class Ticket implements Runnable { private int ticket = 100; Lock lock = new ReentrantLock(); /* * 执行卖票操作 */ @Override public void run() { // 每个窗口卖票的操作 // 窗口 永远开启 while (true) { lock.lock(); if (ticket > 0) {// 有票 可以卖 // 出票操作 // 使用sleep模拟一下出票时间 try { Thread.sleep(50); } catch (InterruptedException e) { // TODO Auto‐generated catch block e.printStackTrace(); } // 获取当前线程对象的名字 String name = Thread.currentThread().getName(); System.out.println(name + "正在卖:" + ticket--); } lock.unlock(); } } }
六、死锁
(1)当两个线程相互等待对方释放“锁”时就会发生死锁
(2)出现死锁后,不会出现异常,不会出现提示,只是所有的线程都处于阻塞状态,无法继续
(3)多线程编程时应该注意避免死锁的发生
线程状态
一、线程状态概述
当线程被创建并启动以后,它既不是一启动就进入了执行状态,也不是一直处于执行状态。在线程的生命周期中,有几种状态呢?在API中 java.lang.Thread.State
这个枚举中给出了六种线程状态;
这里先列出各个线程状态发生的条件,下面将会对每种状态进行详细解析
线程状态 | 导致状态发生条件 |
---|---|
NEW(新建) | 线程刚被创建,但是并未启动。还没调用start方法。 |
Runnable(可运行) | 线程可以在java虚拟机中运行的状态,可能正在运行自己代码,也可能没有,这取决于操作系统处理器。 |
Blocked(锁阻塞) | 当一个线程试图获取一个对象锁,而该对象锁被其他的线程持有,则该线程进入Blocked状态;当该线程持有锁时,该线程将变成Runnable状态。 |
Waiting(无限等待) | 一个线程在等待另一个线程执行一个(唤醒)动作时,该线程进入Waiting状态。进入这个状态后是不能自动唤醒的,必须等待另一个线程调用notify或者notifyAll方法才能够唤醒。 |
Timed Waiting(计时等待) | 同waiting状态,有几个方法有超时参数,调用他们将进入Timed Waiting状态。这一状态将一直保持到超时期满或者接收到唤醒通知。带有超时参数的常用方法有Thread.sleep 、Object.wait。 |
Teminated(被终止) | 因为run方法正常退出而死亡,或者因为没有捕获的异常终止了run方法而死亡。 |
我们不需要去研究这几种状态的实现原理,我们只需知道在做线程操作中存在这样的状态。那我们怎么去理解这几个状态呢,新建与被终止还是很容易理解的,我们就研究一下线程从Runnable(可运行)状态与非运行状态之间的转换问题。
Timed Waiting(计时等待)
Timed Waiting在API中的描述为:一个正在限时等待另一个线程执行一个(唤醒)动作的线程处于这一状态。单独理解这句话,真是玄之又玄,其实我们在之前的操作中已经接触过这个状态了,在哪里呢?、
在我们写卖票的案例中,为了减少线程执行太快,现象不明显等问题,我们在run方法中添加了sleep语句,这样就强制当前正在执行的线程休眠(暂停执行),以“减慢线程”。
其实当我们调用了sleep方法之后,当前执行的线程就进入到“休眠状态”,其实就是所谓的Timed Waiting(计时等待),那么我们通过一个案例加深对该状态的一个理解。
实现一个计数器,计数到100,在每个数字之间暂停1秒,每隔10个数字输出一个字符串
代码:
public class MyThread extends Thread { public void run() { for (int i = 0; i < 100; i++) { if ((i) % 10 == 0) { System.out.println("‐‐‐‐‐‐‐" + i); } System.out.print(i); try { Thread.sleep(1000); System.out.print(" 线程睡眠1秒!\n"); } catch (InterruptedException e) { e.printStackTrace(); } } } public static void main(String[] args) { new MyThread().start(); } }
通过案例可以发现,sleep方法的使用还是很简单的。我们需要记住下面几点:
- 进入 TIMED_WAITING 状态的一种常见情形是调用的 sleep 方法,单独的线程也可以调用,不一定非要有协作关系。
- 为了让其他线程有机会执行,可以将Thread.sleep()的调用放线程run()之内。这样才能保证该线程执行过程中会睡眠。
- sleep与锁无关,线程睡眠到期自动苏醒,并返回到Runnable(可运行)状态。
小提示:sleep()中指定的时间是线程不会运行的最短时间。因此,sleep()方法不能保证该线程睡眠到期后就开始立刻执行。
Blocked(锁阻塞)
Blocked状态在API中的介绍为:一个正在阻塞等待一个监视器锁(锁对象)的线程处于这一状态。
我们已经学完同步机制,那么这个状态是非常好理解的了。比如,线程A与线程B代码中使用同一锁,如果线程A获取到锁,线程A进入到Runnable状态,那么线程B就进入到Blocked锁阻塞状态。
这是由Runnable状态进入Blocked状态。除此Waiting以及Time Waiting状态也会在某种情况下进入阻塞状态。
Waiting(无限等待)
Wating状态在API中介绍为:一个正在无限期等待另一个线程执行一个特别的(唤醒)动作的线程处于这一状态。
那么我们之前遇到过这种状态吗?答案是并没有,但并不妨碍我们进行一个简单深入的了解。我们通过一段代码来学习一下:
public class WaitingTest { public static Object obj = new Object(); public static void main(String[] args) { // 演示waiting new Thread(new Runnable() { @Override public void run() { while (true) { synchronized (obj) { try { System.out.println( Thread.currentThread().getName() + "=== 获取到锁对象,调用wait方法,进入waiting状态,释放锁对象"); obj.wait(); // 无限等待 // obj.wait(5000); //计时等待, 5秒时间到,自动醒来 } catch (InterruptedException e) { e.printStackTrace(); } System.out.println(Thread.currentThread().getName() + "=== 从waiting状态醒来,获取到锁对象,继续执行了"); } } } }, "等待线程").start(); new Thread(new Runnable() { @Override public void run() { // while (true){ //每隔3秒 唤醒一次 try { System.out.println(Thread.currentThread().getName() + "‐‐‐‐‐ 等待3秒钟"); Thread.sleep(3000); } catch (InterruptedException e) { e.printStackTrace(); } synchronized (obj) { System.out.println(Thread.currentThread().getName() + "‐‐‐‐‐ 获取到锁对象,调用notify方法,释放锁对象"); obj.notify(); } } // } }, "唤醒线程").start(); } }
通过上述案例我们会发现,一个调用了某个对象的 Object.wait 方法的线程会等待另一个线程调用此对象的 Object.notify() 方法 或 Object.notifyAll() 方法。
其实waiting状态并不是一个线程的操作,它体现的是多个线程间的通信,可以理解为多个线程之间的协作关系,多个线程会争取锁,同时相互之间又存在协作关系。就好比在公司里你和你的同事们,你们可能存在晋升时的竞争,但更多时候你们更多是一起合作以完成某些任务。
当多个线程协作时,比如A,B线程,如果A线程在Runnable(可运行)状态中调用了wait()方法那么A线程就进入了Waiting(无限等待)状态,同时失去了同步锁。假如这个时候B线程获取到了同步锁,在运行状态中调用了notify()方法,那么就会将无限等待的A线程唤醒。注意是唤醒,如果获取到锁对象,那么A线程唤醒后就进入Runnable(可运行)状态;如果没有获取锁对象,那么就进入到Blocked(锁阻塞状态)。
Waiting 线程状态图
总结
一条有意思的tips:
我们在翻阅API的时候会发现Timed Waiting(计时等待) 与 Waiting(无限等待) 状态联系还是很紧密的,比如Waiting(无限等待) 状态中wait方法是空参的,而timed waiting(计时等待) 中wait方法是带参的。
这种带参的方法,其实是一种倒计时操作,相当于我们生活中的小闹钟,我们设定好时间,到时通知,可是如果提前得到(唤醒)通知,那么设定好时间在通知也就显得多此一举了,那么这种设计方案其实是一举两得。如果没有得到(唤醒)通知,那么线程就处于Timed Waiting状态,直到倒计时完毕自动醒来;如果在倒计时期间得到(唤醒)通知,那么线程从Timed Waiting状态立刻唤醒。