Counting consecutive 1's in NumPy array

*爱你&永不变心* 提交于 2020-06-12 06:26:32

问题


[1, 1, 1, 0, 0, 0, 1, 1, 0, 0]

I have a NumPy array consisting of 0's and 1's like above. How can I add all consecutive 1's like below? Any time I encounter a 0, I reset.

[1, 2, 3, 0, 0, 0, 1, 2, 0, 0]

I can do this using a for loop, but is there a vectorized solution using NumPy?


回答1:


Here's a vectorized approach -

def island_cumsum_vectorized(a):
    a_ext = np.concatenate(( [0], a, [0] ))
    idx = np.flatnonzero(a_ext[1:] != a_ext[:-1])
    a_ext[1:][idx[1::2]] = idx[::2] - idx[1::2]
    return a_ext.cumsum()[1:-1]

Sample run -

In [91]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [92]: island_cumsum_vectorized(a)
Out[92]: array([1, 2, 3, 0, 0, 0, 1, 2, 0, 0])

In [93]: a = np.array([0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1])

In [94]: island_cumsum_vectorized(a)
Out[94]: array([0, 1, 2, 3, 4, 0, 0, 0, 1, 2, 0, 0, 1])

Runtime test

For the timings , I would use OP's sample input array and repeat/tile it and hopefully this should be a less opportunistic benchmark -

Small case :

In [16]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [17]: a = np.tile(a,10)  # Repeat OP's data 10 times

# @Paul Panzer's solution
In [18]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
10000 loops, best of 3: 73.4 µs per loop

In [19]: %timeit island_cumsum_vectorized(a)
100000 loops, best of 3: 8.65 µs per loop

Bigger case :

In [20]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [21]: a = np.tile(a,1000)  # Repeat OP's data 1000 times

# @Paul Panzer's solution
In [22]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
100 loops, best of 3: 6.52 ms per loop

In [23]: %timeit island_cumsum_vectorized(a)
10000 loops, best of 3: 49.7 µs per loop

Nah, I want really huge case :

In [24]: a = np.array([1, 1, 1, 0, 0, 0, 1, 1, 0, 0])

In [25]: a = np.tile(a,100000)  # Repeat OP's data 100000 times

# @Paul Panzer's solution
In [26]: %timeit np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])
1 loops, best of 3: 725 ms per loop

In [27]: %timeit island_cumsum_vectorized(a)
100 loops, best of 3: 7.28 ms per loop



回答2:


If a list comprehension is acceptable

np.concatenate([np.cumsum(c) if c[0] == 1 else c for c in np.split(a, 1 + np.where(np.diff(a))[0])])


来源:https://stackoverflow.com/questions/42129021/counting-consecutive-1s-in-numpy-array

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!