问题
Assuming that I have a pandas dataframe and I want to add thousand separators to all the numbers (integer and float), what is an easy and quick way to do it?
回答1:
When formatting a number with ,
you can just use '{:,}'.format
:
n = 10000
print '{:,}'.format(n)
n = 1000.1
print '{:,}'.format(n)
In pandas, you can use the formatters
parameter to to_html
as discussed here.
num_format = lambda x: '{:,}'.format(x)
def build_formatters(df, format):
return {
column:format
for column, dtype in df.dtypes.items()
if dtype in [ np.dtype('int64'), np.dtype('float64') ]
}
formatters = build_formatters(data_frame, num_format)
data_frame.to_html(formatters=formatters)
Adding the thousands separator has actually been discussed quite a bit on stackoverflow. You can read here or here.
回答2:
Assuming you just want to display (or render to html) the floats/integers with a thousands separator you can use styling which was added in version 0.17.1:
import pandas as pd
df = pd.DataFrame({'int': [1200, 320], 'flt': [5300.57, 12000000.23]})
df.style.format('{:,}')
To render this output to html you use the render method on the Styler.
回答3:
If you want "." as thousand separator and "," as decimal separator this will works:
Data = pd.read_Excel(path)
Data[my_numbers] = Data[my_numbers].map('{:,.2f}'.format).str.replace(",", "~").str.replace(".", ",").str.replace("~", ".")
If you want three decimals instead of two you change "2f" --> "3f"
Data[my_numbers] = Data[my_numbers].map('{:,.3f}'.format).str.replace(",", "~").str.replace(".", ",").str.replace("~", ".")
回答4:
The formatters parameter in to_html will take a dictionary.
Click the example link for reference
回答5:
Use Series.map or Series.apply with this solutions:
df['col'] = df['col'].map('{:,}'.format)
df['col'] = df['col'].map(lambda x: f'{x:,}')
df['col'] = df['col'].apply('{:,}'.format)
df['col'] = df['col'].apply(lambda x: f'{x:,}')
来源:https://stackoverflow.com/questions/41447383/easy-way-to-add-thousand-separator-to-numbers-in-python-pandas-dataframe