R optimisation buy sell

社会主义新天地 提交于 2020-06-01 05:54:13

问题


I need to find a solution to an optimisation problem. In my simplified example, I have a prediction of prices for the next year. I have inventory that can contain max 25 products. I can either sell or buy each month. I cannot buy more than 4 products or sell more than 8 products per month. I am looking for profit by buying for lower price than selling. Is there a package/function that can indicate when to buy and when to sell? The objective is to maximise the profit at the end of the period whilst maintaining set conditions (see the example below). A possible manual solution is provided as well. In the real application, there will be additional conditions such as that I need to maintain a certain level of inventory in winter or that the max buy/sell is dependent on the inventory level. E.g. if the inventory is high then you can sell more etc.

library(tidyverse)
library(lubridate)

df <- tibble(
  date = ymd("2020-06-01") + months(0:11),
  price = c(12, 11, 12, 13, 16, 17, 18, 17, 18, 16, 17, 13),
  total_capacity = 25,
  max_units_buy = 4,
  max_units_sell = 8)

# date             price          total_capacity max_units_buy  max_units_sell
#  1 2020-06-01    12             25             4              8
#  2 2020-07-01    11             25             4              8
#  3 2020-08-01    12             25             4              8
#  4 2020-09-01    13             25             4              8
#  5 2020-10-01    16             25             4              8
#  6 2020-11-01    17             25             4              8
#  7 2020-12-01    18             25             4              8
#  8 2021-01-01    17             25             4              8
#  9 2021-02-01    18             25             4              8
# 10 2021-03-01    16             25             4              8
# 11 2021-04-01    17             25             4              8
# 12 2021-05-01    13             25             4              8

df_manual_solution <- tibble(
  date = ymd("2020-06-01") + months(0:11),
  price = c(12, 11, 12, 13, 16, 17, 18, 17, 18, 16, 17, 13),
  total_capacity = 25,
  max_units_buy = 4,
  max_units_sell = 8,
  real_buy = c(4, 4, 4, 4, 4, 4, 0, 0, 0, 4, 0, 0),
  real_sell = c(0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 4, 0),
  inventory_level = cumsum(real_buy) - cumsum(real_sell),
  profit_loss = cumsum(real_sell*price) - cumsum(real_buy*price))

# date             price          total_capacity max_units_buy  max_units_sell real_buy real_sell inventory_level profit_loss
#  1 2020-06-01    12             25             4              8        4         0               4         -48
#  2 2020-07-01    11             25             4              8        4         0               8         -92
#  3 2020-08-01    12             25             4              8        4         0              12        -140
#  4 2020-09-01    13             25             4              8        4         0              16        -192
#  5 2020-10-01    16             25             4              8        4         0              20        -256
#  6 2020-11-01    17             25             4              8        4         0              24        -324
#  7 2020-12-01    18             25             4              8        0         8              16        -180
#  8 2021-01-01    17             25             4              8        0         8               8         -44
#  9 2021-02-01    18             25             4              8        0         8               0         100
# 10 2021-03-01    16             25             4              8        4         0               4          36
# 11 2021-04-01    17             25             4              8        0         4               0         104
# 12 2021-05-01    13             25             4              8        0         0               0         104

回答1:


I believe this can be modeled as a small Mixed Integer Programming (MIP) model.

Here is an implementation using CVXR:

> library(CVXR)
> 
> # data
> price = c(12, 11, 12, 13, 16, 17, 18, 17, 18, 16, 17, 13)
> capacity = 25
> max_units_buy = 4
> max_units_sell = 8
> 
> # number of time periods
> NT <- length(price)
> 
> # Decision variables
> inv = Variable(NT,integer=T)
> buy = Variable(NT,integer=T)
> sell = Variable(NT,integer=T)
> 
> # Lag operator
> L = cbind(rbind(0,diag(NT-1)),0)
> 
> # optimization model
> problem <- Problem(Maximize(sum(price*(sell-buy))),
+                    list(inv == L %*% inv + buy - sell,
+                         inv >= 0, inv <= capacity,
+                         buy >= 0, buy <= max_units_buy,
+                         sell >= 0, sell <= max_units_sell))
> result <- solve(problem,verbose=T)
GLPK Simplex Optimizer, v4.47
84 rows, 36 columns, 119 non-zeros
*     0: obj =  0.000000000e+000  infeas = 0.000e+000 (12)
*    35: obj = -1.040000000e+002  infeas = 0.000e+000 (0)
OPTIMAL SOLUTION FOUND
GLPK Integer Optimizer, v4.47
84 rows, 36 columns, 119 non-zeros
36 integer variables, none of which are binary
Integer optimization begins...
+    35: mip =     not found yet >=              -inf        (1; 0)
+    35: >>>>> -1.040000000e+002 >= -1.040000000e+002   0.0% (1; 0)
+    35: mip = -1.040000000e+002 >=     tree is empty   0.0% (0; 1)
INTEGER OPTIMAL SOLUTION FOUND
> cat("status:",result$status)
status: optimal
> cat("objective:",result$value)
objective: 104
> print(result$getValue(buy))
      [,1]
 [1,]    4
 [2,]    4
 [3,]    4
 [4,]    4
 [5,]    4
 [6,]    0
 [7,]    0
 [8,]    4
 [9,]    0
[10,]    4
[11,]    0
[12,]    0
> print(result$getValue(sell))
      [,1]
 [1,]    0
 [2,]    0
 [3,]    0
 [4,]    0
 [5,]    0
 [6,]    8
 [7,]    8
 [8,]    0
 [9,]    8
[10,]    0
[11,]    4
[12,]    0
> print(result$getValue(inv))
      [,1]
 [1,]    4
 [2,]    8
 [3,]   12
 [4,]   16
 [5,]   20
 [6,]   12
 [7,]    4
 [8,]    8
 [9,]    0
[10,]    4
[11,]    0
[12,]    0
> 


来源:https://stackoverflow.com/questions/61873468/r-optimisation-buy-sell

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!