问题
I am trying to make a ray intersection with a triangle in the fragment shader, if it colide i will paint a black dot in the texture, if not colide i will paint the texture color. But it do not have effect, I do not know nothing more to do to resolve it.
It is the Shader of the ground and have the coords of a geometry coming from vertex, this geometry will be draw after the ground shader. The color is coming too from the vertex shader, and the light point is a vec3 with a point in the space, I want to create a ray from the fragment position to the light point and see if it colides with the geometry that I have created in the code. After I will need to see if the intersection point in the texture is alpha or not, but it will be the next problem, now i need to see the shadow of the geometry in the ground.
#version 330 core
#define INTERSECT_EPSILON 0.0001
out vec4 FragColor;
in vec2 TexCoord;
in vec3 geometryP;
in vec3 lampP;
in vec3 colorP;
in vec3 imagePos;
//texture samplers
uniform sampler2D groundTexture;
uniform sampler2D treeTexture;
struct Ray
{
vec3 Origin;
vec3 Direction;
};
float dot(vec3 firstPoint, vec3 secondPoint)
{
return (firstPoint.x * secondPoint.x + firstPoint.y * secondPoint.y + firstPoint.z * secondPoint.z);
}
vec3 cross(vec3 firstPoint, vec3 secondPoint)
{
vec3 crossResult;
crossResult.x = firstPoint.y*secondPoint.z - firstPoint.z*secondPoint.y;
crossResult.y = firstPoint.z*secondPoint.x - firstPoint.x*secondPoint.z;
crossResult.z = firstPoint.x*secondPoint.y - firstPoint.y*secondPoint.x;
return crossResult;
}
bool IntersectTriangle(Ray ray, vec3 p0, vec3 p1, vec3 p2)
{
float hit;
vec3 barycentricCoord;
vec3 triangleNormal;
vec3 e0 = p1 - p0;
vec3 e1 = p0 - p2;
triangleNormal = cross(e1 , e0);
float valueDot = 1.0 / dot( triangleNormal, ray.Direction );
vec3 e2 = ( valueDot ) * ( p0 - ray.Origin );
vec3 i = cross(ray.Direction , e2);
barycentricCoord.y = dot( i, e1 );
barycentricCoord.z = dot( i, e0 );
barycentricCoord.x = 1.0 - (barycentricCoord.z + barycentricCoord.y);
hit = dot( triangleNormal, e2 );
return (hit > INTERSECT_EPSILON) && (barycentricCoord.x > 0 && barycentricCoord.y >0 && barycentricCoord.z > 0);
}
void main()
{
vec3 firstPlane[3];
firstPlane[0] = geometryP + vec3(-0.2, -0.2, 0.0);
firstPlane[1] = geometryP + vec3(0.2, -0.2, 0.0);
firstPlane[2] = geometryP + vec3(0.2, 0.5, 0.0);
Ray ray1;
ray1.Origin = imagePos;
ray1.Direction = lampP;
bool intersect = IntersectTriangle(ray1, firstPlane[0], firstPlane[1], firstPlane[2]);
vec3 secondPlane[3];
secondPlane[0] = geometryP + vec3(0.2, -0.2, 0.0);
secondPlane[1] = geometryP + vec3(-0.2, 0.5, 0.0);
secondPlane[2] = geometryP + vec3(0.2, 0.5, 0.0);
if(!intersect)
{
intersect = IntersectTriangle(ray1, secondPlane[0], secondPlane[1], secondPlane[2]);
}
if(!intersect)
FragColor = mix(texture(groundTexture, TexCoord), texture(treeTexture, TexCoord), 0.2);
else
FragColor = vec4(colorP, 0.0);
}
Someone can help me in this?
Edit: Result of the rays, I do not have tested the intersection with the tree texture alpha, the tree is a geometry shader, the ground is two triangles, and the shadow is made in the ground shader with the intersection calculation:
回答1:
First of all note, that dot and cross are built-in glsl functions.
Write a GLSL function that evaluates if a point is inside a triangle in 3 dimensional space:
float PointInOrOn( vec3 P1, vec3 P2, vec3 A, vec3 B )
{
vec3 CP1 = cross(B - A, P1 - A)
vec3 CP2 = cross(B - A, P2 - A)
return step(0.0, dot(CP1, CP2));
}
bool PointInTriangle( vec3 px, vec3 p0, vec3 p1, vec3 p2 )
{
return
PointInOrOn(px, p0, p1, p2) *
PointInOrOn(px, p1, p2, p0) *
PointInOrOn(px, p2, p0, p1);
}
And another function that intersects a plane (which is defined by 3 points, by a ray:
struct Ray
{
vec3 Origin;
vec3 Direction;
};
vec3 IntersectPlane(Ray ray, vec3 p0, vec3 p1, vec3 p2)
{
vec3 D = ray.Direction;
vec3 N = cross(p1-p0, p2-p0);
vec3 X = ray.Origin + D * dot(p0 - ray.Origin, N) / dot(D, N);
return X;
}
Find the intersection point and evaluate if it is in the triangle:
bool IntersectTriangle(Ray ray, vec3 p0, vec3 p1, vec3 p2)
{
vec3 X = IntersectPlane(ray, p0, p1, p2);
return PointInTriangle(X, p0, p1, p2);
}
See the following explanation.
Intersection of a ray and a triangle primitive
The ray is defined by a point R0
and a direction D
.
The plane is defined by a triangle with the three points PA
, PB
, and PC
.
The normal vector of the plane can be calculated by the cross product of 2 legs of the triangle:
N = cross(PC-PA, PB-PA)
The normal distance n
of the point R0
to the plane is:
n = | R0 - PA | * cos(alpha) = dot(PA - R0, N)
It follows that the distance d
of the intersection point X
to the origin of the ray R0 is:
d = n / cos(beta) = n / dot(D, N)
The intersection point X
is:
X = R0 + D * d = R0 + D * dot(PA - R0, N) / dot(D, N)
Note, it is not necessary to normalize N
and D
, because D * dot(PA - R0, N) / dot(D, N)
is equal to normalze(D) * dot(PA - R0, normalze(N)) / dot(normalze(D), normalze(N))
.
To find out, if a point is inside a triangle, has to be tested, if the line from a corner point to the intersection point is between the to legs which are connect to the corner point. The triangle is defined by the points A
, B
, C
and the point to be tested is P
:
bool PointInOrOn( P1, P2, A, B )
{
CP1 = cross( B - A, P1 - A )
CP2 = cross( B - A, P2 - A )
return dot( CP1, CP2 ) >= 0
}
bool PointInOrOnTriangle( P, A, B, C )
{
return PointInOrOn( P, A, B, C ) &&
PointInOrOn( P, B, C, A ) &&
PointInOrOn( P, C, A, B );
}
来源:https://stackoverflow.com/questions/59257678/intersect-a-ray-with-a-triangle-in-glsl-c