Sklearn_pandas in a pipeline returns TypeError: 'builtin_function_or_method' object is not iterable

时光毁灭记忆、已成空白 提交于 2020-05-15 05:10:36

问题


I have a data set with categorical and numerical features on which I want to apply some transformations followed by XGBClassifier.

Link to data set: https://www.kaggle.com/blastchar/telco-customer-churn

As the transformations are different for the numerical and categorical features, I used sklearn_pandas and its DataFrameMapper.

To perform one-hot encoding on the categorical features, I want to use DictVectorizer. But to use DictVectorizer, I first need to convert the dataframe into a dict, which I try to do with a custom transformer Dictifier.

When I run the Pipeline I get the error 'builtin_function_or_method' object is not iterable. Does anyone know what might be causing this error?

import numpy as np 
import pandas as pd 
from sklearn_pandas import DataFrameMapper
from sklearn_pandas import CategoricalImputer
from sklearn_pandas import cross_val_score
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction import DictVectorizer
from sklearn.pipeline import Pipeline
from sklearn.pipeline import FeatureUnion
from sklearn.base import BaseEstimator
from sklearn.base import TransformerMixin
import xgboost as xgb

# Importing the data
df = pd.read_csv('../input/WA_Fn-UseC_-Telco-Customer-Churn.csv', na_values=' ')
X, y = df.iloc[:,1:-1], df.iloc[:,-1]

# Label encoding of the target classes
le = LabelEncoder()
y = le.fit_transform(y.values.reshape(y.shape[0], ))

# Defining the num and cat column names
cat_cols = X.columns[X.dtypes == object].tolist()
num_cols = X.columns[X.dtypes != object].tolist()

# DataFrameMappers for num and cat columns
num_transf_mapper = DataFrameMapper([([num_col], [Imputer(strategy="median"), StandardScaler()]) for num_col in num_cols],
                                    input_df=True,
                                    df_out=True)
cat_transf_mapper = DataFrameMapper([(cat_col , [CategoricalImputer()]) for cat_col in cat_cols],
                                    input_df=True,
                                    df_out=True)

# FeatureUnion of num and cat columns
num_cat_union = FeatureUnion([("num_mapper", num_transf_mapper),
                            ("cat_mapper", cat_transf_mapper)])

# Custom transformer to convert Pandas DataFrame into Dict (needed for DictVectorizer)
class Dictifier(BaseEstimator, TransformerMixin):       
    def fit(self, X, y=None):
        return self

    def transform(self, X):
        return X.to_dict('records')

# Pipeline
pipeline = Pipeline([("featureunion", num_cat_union),
                    ("dictifier", Dictifier()),
                    ("vectorizer", DictVectorizer(sort=False)),
                    ("clf", xgb.XGBClassifier(max_depth=3))])

# Perform cross-validation
cross_val_scores = cross_val_score(pipeline, X, y, scoring="roc_auc", cv=3)

Error trace

    /opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py:542: FutureWarning: From version 0.22, errors during fit will result in a cross validation score of NaN by default. Use error_score='raise' if you want an exception raised or error_score=np.nan to adopt the behavior from version 0.22.FutureWarning)
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-187-96272018fb87> in <module>()
    53 
    54 # Perform cross-validation
---> 55 cross_val_scores = cross_val_score(pipeline, X, y, scoring="roc_auc", cv=3)

/opt/conda/lib/python3.6/site-packages/sklearn_pandas/cross_validation.py in cross_val_score(model, X, *args, **kwargs)
    19     warnings.warn(DEPRECATION_MSG, DeprecationWarning)
    20     X = DataWrapper(X)
---> 21     return sk_cross_val_score(model, X, *args, **kwargs)
    22 
    23 

/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, error_score)
    400                                 fit_params=fit_params,
    401                                 pre_dispatch=pre_dispatch,
--> 402                                 error_score=error_score)
    403     return cv_results['test_score']
    404 

/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in cross_validate(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch, return_train_score, return_estimator, error_score)
    238             return_times=True, return_estimator=return_estimator,
    239             error_score=error_score)
--> 240         for train, test in cv.split(X, y, groups))
    241 
    242     zipped_scores = list(zip(*scores))

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
    979             # remaining jobs.
    980             self._iterating = False
--> 981             if self.dispatch_one_batch(iterator):
    982                 self._iterating = self._original_iterator is not None
    983 

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
    821                 return False
    822             else:
--> 823                 self._dispatch(tasks)
    824                 return True
    825 

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
    778         with self._lock:
    779             job_idx = len(self._jobs)
--> 780             job = self._backend.apply_async(batch, callback=cb)
    781             # A job can complete so quickly than its callback is
    782             # called before we get here, causing self._jobs to

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
    181     def apply_async(self, func, callback=None):
    182         """Schedule a func to be run"""
--> 183         result = ImmediateResult(func)
    184         if callback:
    185             callback(result)

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
    541         # Don't delay the application, to avoid keeping the input
    542         # arguments in memory
--> 543         self.results = batch()
    544 
    545     def get(self):

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
    259         with parallel_backend(self._backend):
    260             return [func(*args, **kwargs)
--> 261                     for func, args, kwargs in self.items]
    262 
    263     def __len__(self):

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
    259         with parallel_backend(self._backend):
    260             return [func(*args, **kwargs)
--> 261                     for func, args, kwargs in self.items]
    262 
    263     def __len__(self):

/opt/conda/lib/python3.6/site-packages/sklearn/model_selection/_validation.py in _fit_and_score(estimator, X, y, scorer, train, test, verbose, parameters, fit_params, return_train_score, return_parameters, return_n_test_samples, return_times, return_estimator, error_score)
    526             estimator.fit(X_train, **fit_params)
    527         else:
--> 528             estimator.fit(X_train, y_train, **fit_params)
    529 
    530     except Exception as e:

/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
    263             This estimator
    264         """
--> 265         Xt, fit_params = self._fit(X, y, **fit_params)
    266         if self._final_estimator is not None:
    267             self._final_estimator.fit(Xt, y, **fit_params)

/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py in _fit(self, X, y, **fit_params)
    228                 Xt, fitted_transformer = fit_transform_one_cached(
    229                     cloned_transformer, Xt, y, None,
--> 230                     **fit_params_steps[name])
    231                 # Replace the transformer of the step with the fitted
    232                 # transformer. This is necessary when loading the transformer

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/memory.py in __call__(self, *args, **kwargs)
    320 
    321     def __call__(self, *args, **kwargs):
--> 322         return self.func(*args, **kwargs)
    323 
    324     def call_and_shelve(self, *args, **kwargs):

/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
    613     if hasattr(transformer, 'fit_transform'):
--> 614         res = transformer.fit_transform(X, y, **fit_params)
    615     else:
    616         res = transformer.fit(X, y, **fit_params).transform(X)

/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py in fit_transform(self, X, y, **fit_params)
    790             delayed(_fit_transform_one)(trans, X, y, weight,
    791                                         **fit_params)
--> 792             for name, trans, weight in self._iter())
    793 
    794         if not result:

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self, iterable)
    979             # remaining jobs.
    980             self._iterating = False
--> 981             if self.dispatch_one_batch(iterator):
    982                 self._iterating = self._original_iterator is not None
    983 

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in dispatch_one_batch(self, iterator)
    821                 return False
    822             else:
--> 823                 self._dispatch(tasks)
    824                 return True
    825 

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in _dispatch(self, batch)
    778         with self._lock:
    779             job_idx = len(self._jobs)
--> 780             job = self._backend.apply_async(batch, callback=cb)
    781             # A job can complete so quickly than its callback is
    782             # called before we get here, causing self._jobs to

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in apply_async(self, func, callback)
    181     def apply_async(self, func, callback=None):
    182         """Schedule a func to be run"""
--> 183         result = ImmediateResult(func)
    184         if callback:
    185             callback(result)

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py in __init__(self, batch)
    541         # Don't delay the application, to avoid keeping the input
    542         # arguments in memory
--> 543         self.results = batch()
    544 
    545     def get(self):

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in __call__(self)
    259         with parallel_backend(self._backend):
    260             return [func(*args, **kwargs)
--> 261                     for func, args, kwargs in self.items]
    262 
    263     def __len__(self):

/opt/conda/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py in <listcomp>(.0)
    259         with parallel_backend(self._backend):
    260             return [func(*args, **kwargs)
--> 261                     for func, args, kwargs in self.items]
    262 
    263     def __len__(self):

/opt/conda/lib/python3.6/site-packages/sklearn/pipeline.py in _fit_transform_one(transformer, X, y, weight, **fit_params)
    612 def _fit_transform_one(transformer, X, y, weight, **fit_params):
    613     if hasattr(transformer, 'fit_transform'):
--> 614         res = transformer.fit_transform(X, y, **fit_params)
    615     else:
    616         res = transformer.fit(X, y, **fit_params).transform(X)

/opt/conda/lib/python3.6/site-packages/sklearn/base.py in fit_transform(self, X, y, **fit_params)
    460         else:
    461             # fit method of arity 2 (supervised transformation)
--> 462             return self.fit(X, y, **fit_params).transform(X)
    463 
    464 

/opt/conda/lib/python3.6/site-packages/sklearn_pandas/dataframe_mapper.py in transform(self, X)
    342                 stacked,
    343                 columns=self.transformed_names_,
--> 344                 index=index)
    345             # preserve types
    346             for col, dtype in zip(self.transformed_names_, dtypes):

/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py in __init__(self, data, index, columns, dtype, copy)
    377             else:
    378                 mgr = self._init_ndarray(data, index, columns, dtype=dtype,
--> 379                                          copy=copy)
    380         elif isinstance(data, (list, types.GeneratorType)):
    381             if isinstance(data, types.GeneratorType):

/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py in _init_ndarray(self, values, index, columns, dtype, copy)
    525                     raise_with_traceback(e)
    526 
--> 527         index, columns = _get_axes(*values.shape)
    528         values = values.T
    529 

/opt/conda/lib/python3.6/site-packages/pandas/core/frame.py in _get_axes(N, K, index, columns)
    482                 index = com._default_index(N)
    483             else:
--> 484                 index = _ensure_index(index)
    485 
    486             if columns is None:

/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py in _ensure_index(index_like, copy)
4972             index_like = copy(index_like)
4973 
-> 4974     return Index(index_like)
4975 
4976 

/opt/conda/lib/python3.6/site-packages/pandas/core/indexes/base.py in __new__(cls, data, dtype, copy, name, fastpath, tupleize_cols, **kwargs)
    449                         data, names=name or kwargs.get('names'))
    450             # other iterable of some kind
--> 451             subarr = com._asarray_tuplesafe(data, dtype=object)
    452             return Index(subarr, dtype=dtype, copy=copy, name=name, **kwargs)
    453 

/opt/conda/lib/python3.6/site-packages/pandas/core/common.py in _asarray_tuplesafe(values, dtype)
    303 
    304     if not (isinstance(values, (list, tuple)) or hasattr(values, '__array__')):
--> 305         values = list(values)
    306     elif isinstance(values, Index):
    307         return values.values

TypeError: 'builtin_function_or_method' object is not iterable

回答1:


This seems like a bug in sklearn_pandas.cross_val_score.

sklearn_pandas wraps the dataframe you supply in a DataWrapper object as seen in source code here:

def cross_val_score(model, X, *args, **kwargs):
    warnings.warn(DEPRECATION_MSG, DeprecationWarning)
    X = DataWrapper(X)
    return sk_cross_val_score(model, X, *args, **kwargs)

which is apparently done to handle older versions of sklearn.cross_validation.cross_val_score which did not handle pandas DataFrames well. DataWrapper returns a list instance when divided into train and test.

But then it is not handled correctly during transform() of DataframeMapper as given in source code here

 if self.df_out:
        # if no rows were dropped preserve the original index,
        # otherwise use a new integer one
        no_rows_dropped = len(X) == len(stacked)
        if no_rows_dropped:
            index = X.index      # <== This here is the source of error
        else:
            index = None

Here, X is not a DataFrame, but a list object, so index is not a list the actual index of pandas as intended, but actually a function of list and hence the error you got.

But since newer sklearn cross_val_score handles DataFrame correctly, you dont have to use the other import.

Change it from:

from sklearn_pandas import cross_val_score

to this:

from sklearn.model_selection import cross_val_score

So now you wont get that error anymore.


But, still further down the code, you will get another error about:

 AttributeError: 'numpy.ndarray' object has no attribute 'to_dict'

This is because you wrap both your DataFrameMapper objects into a FeatureUnion by doing this:

num_cat_union = FeatureUnion([("num_mapper", num_transf_mapper),
                            ("cat_mapper", cat_transf_mapper)])

and then do this:

pipeline = Pipeline([("featureunion", num_cat_union),
                    ("dictifier", Dictifier()),
                    ("vectorizer", DictVectorizer(sort=False)),
                    ("clf", xgb.XGBClassifier(max_depth=3))])

Your Dictifier expects a DataFrame to be passed to it, so that it can call to_dict() on it, but the previous step in pipeline FeatureUnion will not preserve the DataFrame, it will convert that into a numpy array.

Generally, DataFrameMapper and FeatureUnion don't work well together. I would advise you to remove the FeatureUnion altogether and instead combine your both DataFrameMapper objects into a single object. This will effectively work as you wanted FeatureUnion to work.

Something like this:

transformers = []

# Combine both your operations here only
transformers.extend([([num_col], [Imputer(strategy="median"), 
                                  StandardScaler()]) for num_col in num_cols])
transformers.extend([(cat_col , [CategoricalImputer()]) for cat_col in cat_cols])

num_cat_union = DataFrameMapper(transformers,
                                input_df=True,
                                df_out=True)

# Your other code
...
...



回答2:


Let show just part of the code as I do

class MultiColumn(BaseEstimator, TransformerMixin):
    def __init__(self,columns = None):
        self.columns = columns # array of column names to encode

    def fit(self,X,y=None):
        return self
    def transform(self, X):                                                           
        return X[self.columns]

NUMERIC = df[['var1', 'var2']]
CATEGORICAL = df[['var3', 'var4']]

class Imputation(BaseEstimator, TransformerMixin):

    def transform(self, X, y=None, **fit_params):
        return X.fillna(NUMERIC.median())

    def fit_transform(self, X, y=None, **fit_params):
        self.fit(X, y, **fit_params)
        return self.transform(X)

    def fit(self, X, y=None, **fit_params):
        return self

class Cat(BaseEstimator, TransformerMixin):

    def transform(self, X, y=None, **fit_params):
        enc = DictVectorizer(sparse = False)
        encc = enc.fit(CATEGORICAL.T.to_dict().values())
        enc_data = encc.transform(X.T.to_dict().values())
        enc_data[np.isnan(enc_data)] = 1
        return enc_data

    def fit_transform(self, X, y=None, **fit_params):
        self.fit(X, y, **fit_params)
        return self.transform(X)

    def fit(self, X, y=None, **fit_params):
        return self

And Pipeline

pipeline = Pipeline([

# Use FeatureUnion to combine the features
('union', FeatureUnion(
    transformer_list=[

                # numeric
        ('numeric', Pipeline([
            ('selector', MultiColumn(columns=['var1', 'var2'])),
            ('imp', Imputation()),
       ('scaling', preprocessing.StandardScaler(with_mean = 0.))

        ])),
         # categorical
        ('categorical', Pipeline([
            ('selector', MultiColumn(columns=['var3', 'var4'])),
            ('one_hot', Cat()),
            (CategoricalImputer())
        ])),


    ])),


 ('model_fitting', xgb.XGBClassifier(max_depth=3)),
])



回答3:


All together in a pipeline. I hope this might help.

# Import necessary modules
from sklearn_pandas import DataFrameMapper
from sklearn_pandas import CategoricalImputer

# Check number of nulls in each feature column
nulls_per_column = X.isnull().sum()
print(nulls_per_column)

# Create a boolean mask for categorical columns
categorical_feature_mask = X.dtypes == object

# Get list of categorical column names
categorical_columns = X.columns[categorical_feature_mask].tolist()

# Get list of non-categorical column names
non_categorical_columns = X.columns[~categorical_feature_mask].tolist()

# Apply numeric imputer
numeric_imputation_mapper = DataFrameMapper(
                                            [([numeric_feature], Imputer(strategy="median")) for numeric_feature in non_categorical_columns],
                                            input_df=True,
                                            df_out=True
                                           )

# Apply categorical imputer
categorical_imputation_mapper = DataFrameMapper(
                                                [(category_feature, CategoricalImputer()) for category_feature in categorical_columns],
                                                input_df=True,
                                                df_out=True
                                               )

# Import FeatureUnion
from sklearn.pipeline import FeatureUnion

# Combine the numeric and categorical transformations
numeric_categorical_union = FeatureUnion([
                                          ("num_mapper", numeric_imputation_mapper),
                                          ("cat_mapper", categorical_imputation_mapper)
                                         ])

# Create full pipeline
pipeline = Pipeline([
                     ("featureunion", numeric_categorical_union),
                     ("dictifier", Dictifier()),
                     ("vectorizer", DictVectorizer(sort=False)),
                     ("clf", xgb.XGBClassifier())
                    ])

# Perform cross-validation
cross_val_scores = cross_val_score(pipeline, kidney_data, y, scoring="roc_auc", cv=3)

# Print avg. AUC
print("3-fold AUC: ", np.mean(cross_val_scores))


来源:https://stackoverflow.com/questions/52055658/sklearn-pandas-in-a-pipeline-returns-typeerror-builtin-function-or-method-obj

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!