问题
Population over time (should be the same height at every peak
I've programmed a code to simulate a mice and fox population using Runge-Kutta 4th order. But the result is not as wanted to be.. each peak should nearly be at same height I don't think that it is a problem of step size.. Do you have an idea?
import matplotlib.pyplot as plt
import numpy as np
#function definition
def mice(f_0, m_0):
km = 2. #birthrate mice
kmf = 0.02 #deathrate mice
return km*m_0 - kmf*m_0*f_0
def fox(m_0, f_0):
kf = 1.06 #deathrate foxes
kfm = 0.01 #birthrate foxes
return kfm*m_0*f_0 -kf*f_0
def Runge_kutta4( h, f, xn, yn):
k1 = h*f(xn, yn)
k2 = h*f(xn+h/2, yn + k1/2)
k3 = h*f(xn+h/2, yn + k2/2)
k4 = h*f(xn+h, yn + k3)
return yn + k1/6 + k2/3 + k3/3 + k4/6
h = 0.01
f = 15.
m = 100.
f_list = [f]
m_list = [m]
for i in range(10000):
fox_new = Runge_kutta4(h, fox, m, f)
mice_new = Runge_kutta4(h, mice, f, m)
f_list.append(fox_new)
m_list.append(mice_new)
f = fox_new
m = mice_new
time = np.linspace(0,100,10001)
#Faceplot LV
fig = plt.figure(figsize=(10,10))
fig.suptitle("Runge Kutta 4")
plt.grid()
plt.xlabel('Mice', fontsize = 10)
plt.ylabel('Foxes', fontsize = 10)
plt.plot(m_list, f_list, '-')
plt.axis('equal')
plt.show()
fig.savefig("Faceplott_Runge_Kutta4.jpg", dpi=fig.dpi)
fig1 = plt.figure(figsize=(12,10))
fig1.suptitle("Runge Kutta 4")
plt.grid()
plt.xlabel('Time [d]', fontsize = 10)
plt.ylabel('Populationsize', fontsize = 10)
plt.plot(time, m_list , label='mice')
plt.plot(time, f_list , label='fox')
plt.legend()
plt.show()
fig1.savefig("Fox_Miceplot_Runge_Kutta4.jpg", dpi=fig.dpi)
回答1:
In the Runge-Kutta implementation, xn
is the time variable and yn
the scalar state variable. f
is the scalar ODE function for the scalar ODE y'(x)=f(x,y(x))
. However, this is not how you apply the RK4 procedure, your ODE functions are autonomous, contain no time variable but instead of it two coupled state variables. As implemented, the result should be a convoluted first order method of no specific type.
You need to solve the coupled system as a coupled system, that is, the stages for both variables have to be calculated simultaneously with the same increments.
kf1 = h*fox(mn, fn)
km1 = h*mice(fn, mn)
kf2 = h*fox(mn+0.5*km1, fn+0.5*kf1)
km2 = h*mice(fn+0.5*kf1, mn+0.5*km1)
kf3 = h*fox(mn+0.5*km2, fn+0.5*kf2)
km3 = h*mice(fn+0.5*kf2, mn+0.5*km2)
kf4 = h*fox(mn+km3, fn+kf3)
km4 = h*mice(fn+kf3, mn+km3)
etc.
See also Runge Kutta problems in JS for the same problem in JavaScript
The other way is to vectorize the system so that the Runge-Kutta procedure can remain the same, but in the integration loop the state vector has to be constructed and unpacked,
def VL(x,y): f, m = y; return np.array([fox(m,f), mice(f,m)])
y = np.array([f,m])
time = np.arange(x0,xf+0.1*h,h)
for x in time[1:]:
y = Runge_kutta4(h, VL, x, y)
f, m = y
f_list.append(f)
m_list.append(m)
everything else remaining the same.
来源:https://stackoverflow.com/questions/58255653/lotka-volterra-with-runge-kutta-not-desired-precision