Finding intersection points of two ellipses (Python)

岁酱吖の 提交于 2020-05-10 09:30:12

问题


I'm writing a basic 2D shape library in Python (primarily for manipulating SVG drawings), and I'm at a loss for how to efficiently calculate the intersection points of two ellipses.

Each ellipse is defined by the following variables (all floats):

c: center point (x, y)
hradius: "horizontal" radius
vradius: "vertical" radius
phi: rotation from coordinate system's x-axis to ellipse's horizontal axis

Ignoring when the ellipses are identical, there could be 0 through 4 intersection points (no intersection, tangent, partially overlapping, partially overlapping and internally tangent, and fully overlapping).

I've found a few potential solutions:

  • SymPy geometry module - This basically just plugs the ellipse equations into SymPy's solver. I'm not sure whether this makes sense without already having the solver. (Incidentally, I would have used SymPy instead of rolling my own, but it performs horribly when dealing with crazy floats)
  • How to detect if an ellipse intersects(collides with) a circle - This could probably be adapted for two ellipses, but I'm a little fuzzy on how to turn it into sensible code.
  • How Ellipse to Ellipse intersection? - The library the answer references (CADEMIA) might have a good algorithm, but I can't even figure out if it's open source.
  • Wikipedia: Intersecting Two Conics - I don't have enough of a grasp of linear algebra to understand this solution.

Any suggestions on how I should go about calculating the intersections? Speed (it might have to calculate a lot of intersections) and elegance are the primary criteria. Code would be fantastic, but even a good direction to go in would be helpful.


回答1:


In math, you need to express the ellipses as bivariate quadratic equations, and solve it. I found a doucument. All the calculations are in the document, but it may take a while to implement it in Python.

So another method is to approximate the ellipses as polylines, and use shapely to find the intersections, here is the code:

import numpy as np
from shapely.geometry.polygon import LinearRing

def ellipse_polyline(ellipses, n=100):
    t = linspace(0, 2*np.pi, n, endpoint=False)
    st = np.sin(t)
    ct = np.cos(t)
    result = []
    for x0, y0, a, b, angle in ellipses:
        angle = np.deg2rad(angle)
        sa = np.sin(angle)
        ca = np.cos(angle)
        p = np.empty((n, 2))
        p[:, 0] = x0 + a * ca * ct - b * sa * st
        p[:, 1] = y0 + a * sa * ct + b * ca * st
        result.append(p)
    return result

def intersections(a, b):
    ea = LinearRing(a)
    eb = LinearRing(b)
    mp = ea.intersection(eb)

    x = [p.x for p in mp]
    y = [p.y for p in mp]
    return x, y

ellipses = [(1, 1, 2, 1, 45), (2, 0.5, 5, 1.5, -30)]
a, b = ellipse_polyline(ellipses)
x, y = intersections(a, b)
plot(x, y, "o")
plot(a[:,0], a[:,1])
plot(b[:,0], b[:,1])

and the output:

enter image description here

It takes about 1.5ms on my PC.




回答2:


looking at sympy I thinks it has everything you need. (I tried to provide you with example codes; unfortunately, I failed at installing sympy with gmpy2 instead of useless python built-in mathematics)

you have :

  • an ellipse with rotate method, which can be intersected with other ellipses
  • or an arbitrary intersection function that takes variadic number of.. what they call as 'Geometric Entities'.

from their examples, I think it is definitely possible to intersect two ellipses:

>>> from sympy import Ellipse, Point, Line, sqrt
>>> e = Ellipse(Point(0, 0), 5, 7)
...
>>> e.intersection(Ellipse(Point(1, 0), 4, 3))
[Point(0, -3*sqrt(15)/4), Point(0, 3*sqrt(15)/4)]
>>> e.intersection(Ellipse(Point(5, 0), 4, 3))
[Point(2, -3*sqrt(7)/4), Point(2, 3*sqrt(7)/4)]
>>> e.intersection(Ellipse(Point(100500, 0), 4, 3))
[]
>>> e.intersection(Ellipse(Point(0, 0), 3, 4))
[Point(-363/175, -48*sqrt(111)/175), Point(-363/175, 48*sqrt(111)/175),
Point(3, 0)]
>>> e.intersection(Ellipse(Point(-1, 0), 3, 4))
[Point(-17/5, -12/5), Point(-17/5, 12/5), Point(7/5, -12/5),
Point(7/5, 12/5)] 

edit : since general ellipse (ax^2 + bx + cy^2 + dy + exy + f) is not supported in sympy,

you should build equations and transform them yourself, and use their solver to find intersection points.




回答3:


You can use the method shown here: https://math.stackexchange.com/questions/864070/how-to-determine-if-two-ellipse-have-at-least-one-intersection-point/864186#864186

First you should be able to rescale an ellipse in one direction. To do this you need to compute the coefficients of the ellipse as a conic section, rescale, and then recover the new geometric parameters of the ellipse: center, axes, angle.

Then your problem reduces to that of finding the distance from an ellipse to the origin. To solve this last problem you need some iteration. Here is a possible self contained implementation...

from math import *

def bisect(f,t_0,t_1,err=0.0001,max_iter=100):
    iter = 0
    ft_0 = f(t_0)
    ft_1 = f(t_1)
    assert ft_0*ft_1 <= 0.0
    while True:
        t = 0.5*(t_0+t_1)
        ft = f(t)
        if iter>=max_iter or ft<err:
            return t
        if ft * ft_0 <= 0.0:
            t_1 = t
            ft_1 = ft
        else:
            t_0 = t
            ft_0 = ft
        iter += 1

class Ellipse(object):
    def __init__(self,center,radius,angle=0.0):
        assert len(center) == 2
        assert len(radius) == 2
        self.center = center
        self.radius = radius
        self.angle = angle

    def distance_from_origin(self):
        """                                                                           
        Ellipse equation:                                                             
        (x-center_x)^2/radius_x^2 + (y-center_y)^2/radius_y^2 = 1                     
        x = center_x + radius_x * cos(t)                                              
        y = center_y + radius_y * sin(t)                                              
        """
        center = self.center
        radius = self.radius

        # rotate ellipse of -angle to become axis aligned                             

        c,s = cos(self.angle),sin(self.angle)
        center = (c * center[0] + s * center[1],
                  -s* center[0] + c * center[1])

        f = lambda t: (radius[1]*(center[1] + radius[1]*sin(t))*cos(t) -
                       radius[0]*(center[0] + radius[0]*cos(t))*sin(t))

        if center[0] > 0.0:
            if center[1] > 0.0:
                t_0, t_1 = -pi, -pi/2
            else:
                t_0, t_1 = pi/2, pi
        else:
            if center[1] > 0.0:
                t_0, t_1 = -pi/2, 0
            else:
                t_0, t_1 = 0, pi/2

        t = bisect(f,t_0,t_1)
        x = center[0] + radius[0]*cos(t)
        y = center[1] + radius[1]*sin(t)
        return sqrt(x**2 + y**2)

print Ellipse((1.0,-1.0),(2.0,0.5)).distance_from_origin()


来源:https://stackoverflow.com/questions/15445546/finding-intersection-points-of-two-ellipses-python

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!