【原创】(十四)Linux内存管理之page fault处理

一笑奈何 提交于 2020-05-08 08:46:53

背景

  • Read the fucking source code! --By 鲁迅
  • A picture is worth a thousand words. --By 高尔基

说明:

  1. Kernel版本:4.14
  2. ARM64处理器,Contex-A53,双核
  3. 使用工具:Source Insight 3.5, Visio

1. 概述

上篇文章分析到malloc/mmap函数中,内核实现只是在进程的地址空间建立好了vma区域,并没有实际的虚拟地址到物理地址的映射操作。这部分就是在Page Fault异常错误处理中实现的。

Linux内核中的Page Fault异常处理很复杂,涉及的细节也很多,malloc/mmap的物理内存映射只是它的一个子集功能,下图大概涵盖了出现Page Fault的情况:

下边就开始来啃啃硬骨头吧。

2. Arm64处理

Page Fault的异常处理,依赖于体系结构,因此有必要来介绍一下Arm64的处理。
代码主要参考:arch/arm64/kernel/entry.S

Arm64在取指令或者访问数据时,需要把虚拟地址转换成物理地址,这个过程需要进行几种检查,在不满足的情况下都能造成异常:

  1. 地址的合法性,比如以39有效位地址为例,内核地址的高25位为全1,用户进程地址的高25位为全0;
  2. 地址的权限检查,这里边的权限位都位于页表条目中;

从上图中可以看到,最后都会调到do_mem_abort函数,这个函数比较简单,直接看代码,位于arch/arm64/mm/fault.c

/*
 * Dispatch a data abort to the relevant handler.
 */
asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
					 struct pt_regs *regs)
{
	const struct fault_info *inf = esr_to_fault_info(esr);
	struct siginfo info;

	if (!inf->fn(addr, esr, regs))
		return;

	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
		 inf->name, esr, addr);

	mem_abort_decode(esr);

	info.si_signo = inf->sig;
	info.si_errno = 0;
	info.si_code  = inf->code;
	info.si_addr  = (void __user *)addr;
	arm64_notify_die("", regs, &info, esr);
}

该函数中关键的处理:根据传进来的esr获取fault_info信息,从而去调用函数。struct fault_info用于错误状态下对应的处理方法,而内核中也定义了全局结构fault_info,存放了所有的情况。
主要的错误状态和处理函数对应如下:

static const struct fault_info fault_info[] = {
	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
     ...
};

从代码中可以看出:

  • 出现0/1/2/3级页表转换错误时,会调用do_translation_fault,实际中do_translation_fault最终也会调用到do_page_fault
  • 出现1/2/3级页表访问权限的时候,会调用do_page_fault
  • 其他的错误则调用do_bad,其中未列出来的部分还包括do_sea等操作函数;

do_translation_fault

do_page_fault

do_page_fault函数为页错误异常处理的核心函数,与体系结构相关,上图中的handle_mm_fault函数为通用函数,也就是不管哪种处理器结构,最终都会调用到该函数。

3. handle_mm_fault

handle_mm_fault用于处理用户空间的页错误异常:

  • 进程在用户模式下访问用户虚拟地址,触发页错误异常;
  • 进程在内核模式下访问用户虚拟地址,触发页错误异常;
    do_page_fault函数的流程图中也能看出来,当触发异常的虚拟地址属于某个vma,并且拥有触发页错误异常的权限时,会调用到handle_mm_fault函数,而handle_mm_fault函数的主要逻辑是通过__handle_mm_fault来实现的。

流程如下图:

3.1 do_fault

do_fault函数用于处理文件页异常,包括以下三种情况:

  1. 读文件页错误;
  2. 写私有文件页错误;
  3. 写共享文件页错误;

3.2 do_anonymous_page

匿名页的缺页异常处理调用本函数,在以下情况下会触发:

  1. malloc/mmap分配了进程地址空间区域,但是没有进行映射处理,在首次访问时触发;
  2. 用户栈不够的情况下,进行栈区的扩大处理;

3.3 do_swap_page

如果访问Swap页面出错(页面不在内存中),则从Swap cacheSwap文件中读取该页面。
由于在4.14内核版本中,do_swap_page调用的很多函数都是空函数,无法进一步的了解,大体的流程如下图:

3.4 do_wp_page

do_wp_page函数用于处理写时复制(copy on write),会在以下两种情况处理:

  1. 创建子进程时,父子进程会以只读方式共享私有的匿名页和文件页,当试图写的时候,触发页错误异常,从而复制物理页,并创建映射;
  2. 进程创建私有文件映射,读访问后触发异常,将文件页读入到page cache中,并以只读模式创建映射,之后发生写访问后,触发COW

关键的复制工作是由wp_page_copy完成的:

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!