问题
I'm using spark-sql-2.4.1v, and I'm trying to do find quantiles, i.e. percentile 0, percentile 25, etc, on each column of my given data.
As I am doing multiple percentiles, how to retrieve each calculated percentile from the results?
My dataframe df
:
+----+---------+-------------+----------+-----------+
| id| date| revenue|con_dist_1| con_dist_2|
+----+---------+-------------+----------+-----------+
| 10|1/15/2018| 0.010680705| 6|0.019875458|
| 10|1/15/2018| 0.006628853| 4|0.816039063|
| 10|1/15/2018| 0.01378215| 4|0.082049528|
| 10|1/15/2018| 0.010680705| 6|0.019875458|
| 10|1/15/2018| 0.006628853| 4|0.816039063|
+----+---------+-------------+----------+-----------+
I need to get expected output/result as below:
+----+---------+-------------+-------------+------------+-------------+
| id| date| revenue| perctile_col| quantile_0 |quantile_10 |
+----+---------+-------------+-------------+------------+-------------+
| 10|1/15/2018| 0.010680705| con_dist_1 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.010680705| con_dist_2 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.006628853| con_dist_1 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.006628853| con_dist_2 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.01378215| con_dist_1 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.01378215| con_dist_2 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.010680705| con_dist_1 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.010680705| con_dist_2 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.006628853| con_dist_1 |<quant0_val>|<quant10_val>|
| 10|1/15/2018| 0.006628853| con_dist_2 |<quant0_val>|<quant10_val>|
+----+---------+-------------+-------------+------------+-------------+
I have already calculated the quantiles like this but need to add them to the output dataframe:
val col_list = Array("con_dist_1","con_dist_2")
val quantiles = df.stat.approxQuantile(col_list, Array(0.0,0.1,0.5),0.0)
val percentile_0 = 0;
val percentile_10 = 1;
val Q0 = quantiles(col_list.indexOf("con_dist_1"))(percentile_0)
val Q10 =quantiles(col_list.indexOf("con_dist_1"))(percentile_10)
How to get expected output show above?
回答1:
An easy solution would be to create multiple dataframes, one for each "con_dist" column, and then use union
to merge them together. This can easily be done using a map
over col_list
as follows:
val col_list = Array("con_dist_1", "con_dist_2")
val quantiles = df.stat.approxQuantile(col_list, Array(0.0,0.1,0.5), 0.0)
val df2 = df.drop(col_list: _*) // we don't need these columns anymore
val result = col_list
.zipWithIndex
.map{case (col, colIndex) =>
val Q0 = quantiles(colIndex)(percentile_0)
val Q10 = quantiles(colIndex)(percentile_10)
df2.withColumn("perctile_col", lit(col))
.withColumn("quantile_0", lit(Q0))
.withColumn("quantile_10", lit(Q10))
}.reduce(_.union(_))
The final dataframe will then be:
+---+---------+-----------+------------+-----------+-----------+
| id| date| revenue|perctile_col| quantile_0|quantile_10|
+---+---------+-----------+------------+-----------+-----------+
| 10|1/15/2018|0.010680705| con_dist_1| 4.0| 4.0|
| 10|1/15/2018|0.006628853| con_dist_1| 4.0| 4.0|
| 10|1/15/2018| 0.01378215| con_dist_1| 4.0| 4.0|
| 10|1/15/2018|0.010680705| con_dist_1| 4.0| 4.0|
| 10|1/15/2018|0.006628853| con_dist_1| 4.0| 4.0|
| 10|1/15/2018|0.010680705| con_dist_2|0.019875458|0.019875458|
| 10|1/15/2018|0.006628853| con_dist_2|0.019875458|0.019875458|
| 10|1/15/2018| 0.01378215| con_dist_2|0.019875458|0.019875458|
| 10|1/15/2018|0.010680705| con_dist_2|0.019875458|0.019875458|
| 10|1/15/2018|0.006628853| con_dist_2|0.019875458|0.019875458|
+---+---------+-----------+------------+-----------+-----------+
来源:https://stackoverflow.com/questions/60561513/how-to-include-map-calculated-percentiles-to-the-result-dataframe