第05讲:Flink SQL & Table 编程和案例

*爱你&永不变心* 提交于 2020-05-06 00:17:17

我们在第 02 课时中使用 Flink Table & SQL 的 API 实现了最简单的 WordCount 程序。在这一课时中,将分别从 Flink Table & SQL 的背景和编程模型、常见的 API、算子和内置函数等对 Flink Table & SQL 做一个详细的讲解和概括,最后模拟了一个实际业务场景使用 Flink Table & SQL 开发。

Flink Table & SQL 概述

背景

我们在前面的课时中讲过 Flink 的分层模型,Flink 自身提供了不同级别的抽象来支持我们开发流式或者批量处理程序,下图描述了 Flink 支持的 4 种不同级别的抽象。

Table APISQL 处于最顶端,是 Flink 提供的高级 API 操作。Flink SQL 是 Flink 实时计算为简化计算模型,降低用户使用实时计算门槛而设计的一套符合标准 SQL 语义的开发语言。

我们在第 04 课时中提到过,Flink 在编程模型上提供了 DataStream 和 DataSet 两套 API,并没有做到事实上的批流统一,因为用户和开发者还是开发了两套代码。正是因为 Flink Table & SQL 的加入,可以说 Flink 在某种程度上做到了事实上的批流一体。

原理

你之前可能都了解过 Hive,在离线计算场景下 Hive 几乎扛起了离线数据处理的半壁江山。它的底层对 SQL 的解析用到了 Apache Calcite,Flink 同样把 SQL 的解析、优化和执行教给了 Calcite。

下图是一张经典的 Flink Table & SQL 实现原理图,可以看到 Calcite 在整个架构中处于绝对核心地位。

从图中可以看到无论是批查询 SQL 还是流式查询 SQL,都会经过对应的转换器 Parser 转换成为节点树 SQLNode tree,然后生成逻辑执行计划 Logical Plan,逻辑执行计划在经过优化后生成真正可以执行的物理执行计划,交给 DataSet 或者 DataStream 的 API 去执行。

在这里我们不对 Calcite 的原理过度展开,有兴趣的可以直接在官网上学习。

一个完整的 Flink Table & SQL Job 也是由 Source、Transformation、Sink 构成:

Source 部分来源于外部数据源,我们经常用的有 Kafka、MySQL 等; Transformation 部分则是 Flink Table & SQL 支持的常用 SQL 算子,比如简单的 Select、Groupby 等,当然在这里也有更为复杂的多流 Join、流与维表的 Join 等; Sink 部分是指的结果存储比如 MySQL、HBase 或 Kakfa 等。

动态表

与传统的表 SQL 查询相比,Flink Table & SQL 在处理流数据时会时时刻刻处于动态的数据变化中,所以便有了一个动态表的概念。

动态表的查询与静态表一样,但是,在查询动态表的时候,SQL 会做连续查询,不会终止。

我们举个简单的例子,Flink 程序接受一个 Kafka 流作为输入,Kafka 中为用户的购买记录:

首先,Kafka 的消息会被源源不断的解析成一张不断增长的动态表,我们在动态表上执行的 SQL 会不断生成新的动态表作为结果表。

Flink Table & SQL 算子和内置函数

我们在讲解 Flink Table & SQL 所支持的常用算子前,需要说明一点,Flink 自从 0.9 版本开始支持 Table & SQL 功能一直处于完善开发中,且在不断进行迭代。

我们在官网中也可以看到这样的提示:

Please note that the Table API and SQL are not yet feature complete and are being actively developed. Not all operations are supported by every combination of [Table API, SQL] and [stream, batch] input. Flink Table & SQL 的开发一直在进行中,并没有支持所有场景下的计算逻辑。从我个人实践角度来讲,在使用原生的 Flink Table & SQL 时,务必查询官网当前版本对 Table & SQL 的支持程度,尽量选择场景明确,逻辑不是极其复杂的场景。

常用算子

目前 Flink SQL 支持的语法主要如下:

query:
  values
  | {
      select
      | selectWithoutFrom
      | query UNION [ ALL ] query
      | query EXCEPT query
      | query INTERSECT query
    }
    [ ORDER BY orderItem [, orderItem ]* ]
    [ LIMIT { count | ALL } ]
    [ OFFSET start { ROW | ROWS } ]
    [ FETCH { FIRST | NEXT } [ count ] { ROW | ROWS } ONLY]

orderItem:
  expression [ ASC | DESC ]

select:
  SELECT [ ALL | DISTINCT ]
  { * | projectItem [, projectItem ]* }
  FROM tableExpression
  [ WHERE booleanExpression ]
  [ GROUP BY { groupItem [, groupItem ]* } ]
  [ HAVING booleanExpression ]
  [ WINDOW windowName AS windowSpec [, windowName AS windowSpec ]* ]

selectWithoutFrom:
  SELECT [ ALL | DISTINCT ]
  { * | projectItem [, projectItem ]* }

projectItem:
  expression [ [ AS ] columnAlias ]
  | tableAlias . *

tableExpression:
  tableReference [, tableReference ]*
  | tableExpression [ NATURAL ] [ LEFT | RIGHT | FULL ] JOIN tableExpression [ joinCondition ]

joinCondition:
  ON booleanExpression
  | USING '(' column [, column ]* ')'

tableReference:
  tablePrimary
  [ matchRecognize ]
  [ [ AS ] alias [ '(' columnAlias [, columnAlias ]* ')' ] ]

tablePrimary:
  [ TABLE ] [ [ catalogName . ] schemaName . ] tableName
  | LATERAL TABLE '(' functionName '(' expression [, expression ]* ')' ')'
  | UNNEST '(' expression ')'

values:
  VALUES expression [, expression ]*

groupItem:
  expression
  | '(' ')'
  | '(' expression [, expression ]* ')'
  | CUBE '(' expression [, expression ]* ')'
  | ROLLUP '(' expression [, expression ]* ')'
  | GROUPING SETS '(' groupItem [, groupItem ]* ')'

windowRef:
    windowName
  | windowSpec

windowSpec:
    [ windowName ]
    '('
    [ ORDER BY orderItem [, orderItem ]* ]
    [ PARTITION BY expression [, expression ]* ]
    [
        RANGE numericOrIntervalExpression {PRECEDING}
      | ROWS numericExpression {PRECEDING}
    ]
    ')'
...

可以看到 Flink SQL 和传统的 SQL 一样,支持了包含查询、连接、聚合等场景,另外还支持了包括窗口、排序等场景。下面我就以最常用的算子来做详细的讲解。

SELECT/AS/WHERE

SELECT、WHERE 和传统 SQL 用法一样,用于筛选和过滤数据,同时适用于 DataStream 和 DataSet。

SELECT * FROM Table;
SELECT name,age FROM Table;

当然我们也可以在 WHERE 条件中使用 =、<、>、<>、>=、<=,以及 AND、OR 等表达式的组合:

SELECT name,age FROM Table where name LIKE '%小明%';
SELECT * FROM Table WHERE age = 20;
SELECT name, age
FROM Table
WHERE name IN (SELECT name FROM Table2)

GROUP BY / DISTINCT/HAVING

GROUP BY 用于进行分组操作,DISTINCT 用于结果去重。 HAVING 和传统 SQL 一样,可以用来在聚合函数之后进行筛选。

SELECT DISTINCT name FROM Table;
SELECT name, SUM(score) as TotalScore FROM Table GROUP BY name;
SELECT name, SUM(score) as TotalScore FROM Table GROUP BY name HAVING
SUM(score) > 300;

JOIN

JOIN 可以用于把来自两个表的数据联合起来形成结果表,目前 Flink 的 Join 只支持等值连接。Flink 支持的 JOIN 类型包括:

JOIN - INNER JOIN
LEFT JOIN - LEFT OUTER JOIN
RIGHT JOIN - RIGHT OUTER JOIN
FULL JOIN - FULL OUTER JOIN

例如,用用户表和商品表进行关联:

SELECT *
FROM User LEFT JOIN Product ON User.name = Product.buyer

SELECT *
FROM User RIGHT JOIN Product ON User.name = Product.buyer

SELECT *
FROM User FULL OUTER JOIN Product ON User.name = Product.buyer
LEFT JOIN、RIGHT JOIN 、FULL JOIN 相与我们传统 SQL 中含义一样。

WINDOW

根据窗口数据划分的不同,目前 Apache Flink 有如下 3 种:

  • 滚动窗口,窗口数据有固定的大小,窗口中的数据不会叠加;
  • 滑动窗口,窗口数据有固定大小,并且有生成间隔;
  • 会话窗口,窗口数据没有固定的大小,根据用户传入的参数进行划分,窗口数据无叠加;

滚动窗口滚动窗口

滚动窗口的特点是:有固定大小、窗口中的数据不会重叠,如下图所示:

滚动窗口的语法:

SELECT 
    [gk],
    [TUMBLE_START(timeCol, size)], 
    [TUMBLE_END(timeCol, size)], 
    agg1(col1), 
    ... 
    aggn(colN)
FROM Tab1
GROUP BY [gk], TUMBLE(timeCol, size)

举例说明,我们需要计算每个用户每天的订单数量:

SELECT user, TUMBLE_START(timeLine, INTERVAL '1' DAY) as winStart, SUM(amount) FROM Orders GROUP BY TUMBLE(timeLine, INTERVAL '1' DAY), user;

其中,TUMBLE_START 和 TUMBLE_END 代表窗口的开始时间和窗口的结束时间,TUMBLE (timeLine, INTERVAL '1' DAY) 中的 timeLine 代表时间字段所在的列,INTERVAL '1' DAY 表示时间间隔为一天。

滑动窗口

滑动窗口有固定的大小,与滚动窗口不同的是滑动窗口可以通过 slide 参数控制滑动窗口的创建频率。需要注意的是,多个滑动窗口可能会发生数据重叠,具体语义如下:

滑动窗口的语法与滚动窗口相比,只多了一个 slide 参数:

SELECT 
    [gk], 
    [HOP_START(timeCol, slide, size)] ,
    [HOP_END(timeCol, slide, size)],
    agg1(col1), 
    ... 
    aggN(colN) 
FROM Tab1
GROUP BY [gk], HOP(timeCol, slide, size)

例如,我们要每间隔一小时计算一次过去 24 小时内每个商品的销量:

SELECT product, SUM(amount) FROM Orders GROUP BY HOP(rowtime, INTERVAL '1' HOUR, INTERVAL '1' DAY), product

上述案例中的 INTERVAL '1' HOUR 代表滑动窗口生成的时间间隔。

会话窗口

会话窗口定义了一个非活动时间,假如在指定的时间间隔内没有出现事件或消息,则会话窗口关闭。

会话窗口的语法如下:

SELECT 
    [gk], 
    SESSION_START(timeCol, gap) AS winStart,
    SESSION_END(timeCol, gap) AS winEnd,
    agg1(col1),
     ... 
    aggn(colN)
FROM Tab1
GROUP BY [gk], SESSION(timeCol, gap)

举例,我们需要计算每个用户过去 1 小时内的订单量:

SELECT user, SESSION_START(rowtime, INTERVAL '1' HOUR) AS sStart, SESSION_ROWTIME(rowtime, INTERVAL '1' HOUR) AS sEnd, SUM(amount) FROM Orders GROUP BY SESSION(rowtime, INTERVAL '1' HOUR), user

内置函数

Flink 中还有大量的内置函数,我们可以直接使用,将内置函数分类如下:

  • 比较函数
  • 逻辑函数
  • 算术函数
  • 字符串处理函数
  • 时间函数

比较函数

逻辑函数

算术函数

字符串处理函数

时间函数

Flink Table & SQL 案例

上面分别介绍了 Flink Table & SQL 的原理和支持的算子,我们模拟一个实时的数据流,然后讲解 SQL JOIN 的用法。

在上一课时中,我们利用 Flink 提供的自定义 Source 功能来实现一个自定义的实时数据源,具体实现如下:

public class MyStreamingSource implements SourceFunction<Item> {

    private boolean isRunning = true;

    /**
     * 重写run方法产生一个源源不断的数据发送源
     * @param ctx
     * @throws Exception
     */
    public void run(SourceContext<Item> ctx) throws Exception {
        while(isRunning){
            Item item = generateItem();
            ctx.collect(item);

            //每秒产生一条数据
            Thread.sleep(1000);
        }
    }
    @Override
    public void cancel() {
        isRunning = false;
    }

    //随机产生一条商品数据
    private Item generateItem(){
        int i = new Random().nextInt(100);
        ArrayList<String> list = new ArrayList();
        list.add("HAT");
        list.add("TIE");
        list.add("SHOE");
        Item item = new Item();
        item.setName(list.get(new Random().nextInt(3)));
        item.setId(i);
        return item;
    }
}

我们把实时的商品数据流进行分流,分成 even 和 odd 两个流进行 JOIN,条件是名称相同,最后,把两个流的 JOIN 结果输出。

class StreamingDemo {
    public static void main(String[] args) throws Exception {

        EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().useBlinkPlanner().inStreamingMode().build();
        StreamExecutionEnvironment bsEnv = StreamExecutionEnvironment.getExecutionEnvironment();
        StreamTableEnvironment bsTableEnv = StreamTableEnvironment.create(bsEnv, bsSettings);

        SingleOutputStreamOperator<Item> source = bsEnv.addSource(new MyStreamingSource()).map(new MapFunction<Item, Item>() {
            @Override
            public Item map(Item item) throws Exception {
                return item;
            }
        });

        DataStream<Item> evenSelect = source.split(new OutputSelector<Item>() {
            @Override
            public Iterable<String> select(Item value) {
                List<String> output = new ArrayList<>();
                if (value.getId() % 2 == 0) {
                    output.add("even");
                } else {
                    output.add("odd");
                }
                return output;
            }
        }).select("even");

        DataStream<Item> oddSelect = source.split(new OutputSelector<Item>() {
            @Override
            public Iterable<String> select(Item value) {
                List<String> output = new ArrayList<>();
                if (value.getId() % 2 == 0) {
                    output.add("even");
                } else {
                    output.add("odd");
                }
                return output;
            }
        }).select("odd");


        bsTableEnv.createTemporaryView("evenTable", evenSelect, "name,id");
        bsTableEnv.createTemporaryView("oddTable", oddSelect, "name,id");

        Table queryTable = bsTableEnv.sqlQuery("select a.id,a.name,b.id,b.name from evenTable as a join oddTable as b on a.name = b.name");

        queryTable.printSchema();

        bsTableEnv.toRetractStream(queryTable, TypeInformation.of(new TypeHint<Tuple4<Integer,String,Integer,String>>(){})).print();

        bsEnv.execute("streaming sql job");
    }

}

直接右键运行,在控制台可以看到输出:

总结

我们在这一课时中讲解了 Flink Table & SQL 的背景和原理,并且讲解了动态表的概念;同时对 Flink 支持的常用 SQL 和内置函数进行了讲解;最后用一个案例,讲解了整个 Flink Table & SQL 的使用。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!