matplotlib geopandas plot chloropleth with set bins for colorscheme

邮差的信 提交于 2020-05-05 20:31:11

问题


How do I set a consistent colorscheme for three axes in the same figure?

The following should be a wholly reproducible example to run the code and get the same figure I have posted below.

Get the shapefile data from the Office for National Statistics. Run this in a terminal as a bash file / commands.

wget --output-document 'LA_authorities_boundaries.zip' 'https://opendata.arcgis.com/datasets/8edafbe3276d4b56aec60991cbddda50_1.zip?outSR=%7B%22latestWkid%22%3A27700%2C%22wkid%22%3A27700%7D&session=850489311.1553456889'

mkdir LA_authorities_boundaries
cd LA_authorities_boundaries
unzip ../LA_authorities_boundaries.zip

The python code that reads the shapefile and creates a dummy GeoDataFrame for reproducing the behaviour.

import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt

gdf = gpd.read_file(
    'LA_authorities_boundaries/Local_Authority_Districts_December_2015_Full_Extent_Boundaries_in_Great_Britain.shp'
)

# 380 values
df = pd.DataFrame([])
df['AREA_CODE'] = gdf.lad15cd.values
df['central_pop'] = np.random.normal(30, 15, size=(len(gdf.lad15cd.values)))
df['low_pop'] = np.random.normal(10, 15, size=(len(gdf.lad15cd.values)))
df['high_pop'] = np.random.normal(50, 15, size=(len(gdf.lad15cd.values)))

Join the shapefile from ONS and create a geopandas.GeoDataFrame

def join_df_to_shp(pd_df, gpd_gdf):
    """"""
    df_ = pd.merge(pd_df, gpd_gdf[['lad15cd','geometry']], left_on='AREA_CODE', right_on='lad15cd', how='left')

    # DROP the NI counties
    df_ = df_.dropna(subset=['geometry'])

    # convert back to a geopandas object (for ease of plotting etc.)
    crs = {'init': 'epsg:4326'}
    gdf_ = gpd.GeoDataFrame(df_, crs=crs, geometry='geometry')
    # remove the extra area_code column joined from gdf
    gdf_.drop('lad15cd',axis=1, inplace=True)

    return gdf_

pop_gdf = join_df_to_shp(df, gdf)

Make the plots

fig,(ax1,ax2,ax3,) = plt.subplots(1,3,figsize=(15,6))

pop_gdf.plot(
    column='low_pop', ax=ax1, legend=True,  scheme='quantiles', cmap='OrRd',
)
pop_gdf.plot(
    column='central_pop', ax=ax2, legend=True, scheme='quantiles', cmap='OrRd',
)
pop_gdf.plot(
    column='high_pop', ax=ax3, legend=True,  scheme='quantiles', cmap='OrRd',
)
for ax in (ax1,ax2,ax3,):
    ax.axis('off')

I want all three ax objects to share the same bins (preferable the central_pop scenario quantiles) so that the legend is consistent for the whole figure. The quantiles from ONE scenario (central) would become the levels for all

This way I should see darker colors (more red) in the far right ax showing the high_pop scenario.

How can I set the colorscheme bins for the whole figure / each of the ax objects?

The simplest way I can see this working is either a) Provide a set of bins to the geopandas.plot() function b) extract the colorscheme / bins from one ax and apply it to another.


回答1:


From geopandas 0.5 onwards you can use a custom scheme defined as scheme="User_Defined" and supply the binning via classification_kwds.

import geopandas as gpd
print(gpd.__version__)   ## 0.5
import numpy as np; np.random.seed(42)
import matplotlib.pyplot as plt 

gdf = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) 
gdf['quant']=np.random.rand(len(gdf))*100-20

fig, ax = plt.subplots()

gdf.plot(column='quant', cmap='RdBu', scheme="User_Defined", 
         legend=True, classification_kwds=dict(bins=[-10,20,30,50,70]),
         ax=ax)

plt.show()

So the remaining task is to get a list of bins from the quantiles of one of the columns. This should be easily done, e.g. via

import mapclassify
bins = mapclassify.Quantiles(gdf['quant'], k=5).bins

then setting classification_kwds=dict(bins=bins) in the above code.



来源:https://stackoverflow.com/questions/56690524/matplotlib-geopandas-plot-chloropleth-with-set-bins-for-colorscheme

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!