Pandas merge two dataframes with different columns

断了今生、忘了曾经 提交于 2019-11-27 18:09:13

I think in this case concat is what you want:

In [12]:

pd.concat([df,df1], axis=0, ignore_index=True)
Out[12]:
   attr_1  attr_2  attr_3  id  quantity
0       0       1     NaN   1        20
1       1       1     NaN   2        23
2       1       1     NaN   3        19
3       0       0     NaN   4        19
4       1     NaN       0   5         8
5       0     NaN       1   6        13
6       1     NaN       1   7        20
7       1     NaN       1   8        25

by passing axis=0 here you are stacking the df's on top of each other which I believe is what you want then producing NaN value where they are absent from their respective dfs.

Will H

I had this problem today using any of concat, append or merge, and I got around it by adding a helper column sequentially numbered and then doing an outer join

helper=1
for i in df1.index:
    df1.loc[i,'helper']=helper
    helper=helper+1
for i in df2.index:
    df2.loc[i,'helper']=helper
    helper=helper+1
df1.merge(df2,on='helper',how='outer')
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!