CF1340F Nastya and CBS

安稳与你 提交于 2020-05-02 12:40:12

原题链接

定义\(f(S)=去除所有括号珂以匹配的子串后的剩下的字符串\),例如:\(f(\))[]([)]([])[[\()\)=)([)][[

\(S\)中含有交错的括号序列,如([)],则称\(S\)为WBS(wrong brackets sequence)。

如果字符串\(S\)是一个CBS(correct brackets sequence),则\(f(S)=\operatorname {null}\)

否则,那么\(f(S)\)必然会有一下3种情况:

  1. \(f(S)\)是WBS

  2. \(f(S)\)左侧有多余的右括号

  3. \(f(S)\)右侧有多余的左括号

我们考虑用线段树维护\(f(S)\)

先想想合并两个字符串\(S_l,S_r\)需要用到哪些东西

首先要有一个玩意儿来判断\(S\)是否是WBS,因为两个WBS合并后也是一个WBS。然后就要处理左右括号的问题。

只有\(S_r\)的左边的右括号有珂能和\(S_l\)的右边的右括号合并。这要满足\(S_l\)的右边的左括号和\(S_r\)的左边的右括号的括号类型是相同的。

所以,我们维护线段树上的字符串\(S\),需要用到\(3\)个东西:

  1. 一个boolean值(判断\(S\)是否为WBS)

  2. 一个字符串\(l\),代表\(S\)左边的右括号

  3. 一个字符串\(r\),代表\(S\)右边的左括号

直接维护\(l,r\)显然代价太大了,考虑用可持久化treap维护这两个玩意儿。

因为我们要判断\(S_l\)右边的左括号和\(S_r\)左边的右括号是否匹配,所以我们还需要在可持久化treap上维护字符串的hash值。

至于为什么要用可持久化treap,我来解释一下:

  1. \(S_l\)的右边的左括号的长度和\(S_r\)的左边的右括号的长度是不确定的,我们需要来裁剪一段最长的字符串来看是否匹配,如果匹配,还要把匹配的部分删掉,这是线段树所不能做的事情

  2. 如果你用的是treap而不是可持久化treap,在线段树父级节点删除匹配的部分的时候,子节点也会一起把那个删掉。所以要用可持久化treap克隆一下节点。

贴一下代码:

// Code by H~$~C
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <stdint.h>
#include <stdbool.h>
#include <time.h>
#define lambda(return_type, function_body) ({ return_type $this function_body $this; })
#define $ lambda // it won't allow comma (that is ',') without brackets in the function body!
#define inline __attribute__((__always_inline__)) __inline
#define eprintf(...) (fprintf(stderr, __VA_ARGS__) & fflush(stderr))
#define max(a, b) ({ __typeof(a) _A = a, _B = b; (_A > _B) ? a : b; })
#define min(a, b) ({ __typeof(a) _A = a, _B = b; (_A < _B) ? a : b; })
#define swap(a, b) ({ __typeof(a) _swap_tmp = a; a = b; b = _swap_tmp; 0; })
typedef long long int64;
typedef unsigned long long hash_type;

const hash_type BASE = 100003;
const hash_type MOD = 1000000007;

#define Maxn 100005

int n, k, q;
int a[Maxn];
bool lb[Maxn];
hash_type pw[Maxn];

// treap
#define T_Maxn 3000000
#define T_RMaxn 2950000
typedef struct {
  int size, fix;
  int l, r;
  int key;
  hash_type hash;
} t_node;
int total_node;
#define ls tr[p].l
#define rs tr[p].r
t_node tr[T_Maxn];
inline void t_clear() {
  total_node = 0;
  tr[0].size = tr[0].fix = 0;
  tr[0].l = tr[0].r = 0;
  tr[0].key = 0;
  tr[0].hash = 0;
}
inline void t_initialize(int p, int v) {
  tr[p].size = 1;
  tr[p].fix = ((rand() << 15) | rand());
  tr[p].l = tr[p].r = 0;
  tr[p].key = v;
  tr[p].hash = v;
}
#define t_newnode(...)                          \
({                                              \
  t_initialize(++total_node, __VA_ARGS__);      \
  total_node;                                   \
})
#define t_clone(p) ({ tr[++total_node] = tr[p]; total_node; })
inline void t_pushup(int p) {
  if (!p) return ;
  tr[p].size = tr[ls].size + tr[rs].size + 1;
  tr[p].hash = (tr[ls].hash * pw[tr[rs].size + 1] + tr[p].key * pw[tr[rs].size] + tr[rs].hash) % MOD;
}
int t_merge(int l, int r) {
  if (!l || !r) return l | r;
  if (tr[l].fix < tr[r].fix) {
    l = t_clone(l);
    tr[l].r = t_merge(tr[l].r, r);
    t_pushup(l);
    return l;
  }
  else {
    r = t_clone(r);
    tr[r].l = t_merge(l, tr[r].l);
    t_pushup(r);
    return r;
  }
}
void t_split(int p, int s, int *l, int *r) {
  if (!p) *l = *r = 0;
  else {
    p = t_clone(p);
    int lsize = tr[ls].size + 1;
    if (lsize <= s) {
      *l = p;
      t_split(rs, s - lsize, &tr[*l].r, r);
      t_pushup(*l);
    }
    else {
      *r = p;
      t_split(ls, s, l, &tr[*r].l);
      t_pushup(*r);
    }
  }
}
#undef ls
#undef rs

bool usl[Maxn << 2];
int lf[Maxn << 2], rf[Maxn << 2];
#define ls (p << 1)
#define rs ((p << 1) | 1)
#define mid ((l + r) >> 1)
void merge_answers(bool usl, bool usr, int l1, int r1, int l2, int r2, bool *us, int *l, int *r) {
  *us = usl || usr;
  if (*us) return ;
  int A, B;
  if (tr[r1].size >= tr[l2].size) {
    t_split(r1, tr[r1].size - tr[l2].size, &A, &B);
    if (tr[B].hash != tr[l2].hash) *us = 1;
    else {
      *us = 0;
      *l = l1;
      *r = t_merge(A, r2);
    }
  }
  else {
    t_split(l2, tr[l2].size - tr[r1].size, &A, &B);
    if (tr[B].hash != tr[r1].hash) *us = 1;
    else {
      *us = 0;
      *l = t_merge(A, l1);
      *r = r2;
    }
  }
}
inline void pushup(int p) {
  merge_answers(usl[ls], usl[rs], lf[ls], rf[ls], lf[rs], rf[rs], usl + p, lf + p, rf + p);
}
inline void apply(int p, int id) {
  lf[p] = rf[p] = usl[p] = 0;
  if (lb[id]) rf[p] = t_newnode(a[id]);
  else lf[p] = t_newnode(a[id]);
}
void build(int p, int l, int r) {
  if (l == r)
    return apply(p, l);
  build(ls, l, mid);
  build(rs, mid + 1, r);
  pushup(p);
}
void modify(int p, int l, int r, int pos, int v, bool dir) {
  if (l == r) {
    a[l] = v;
    lb[l] = dir;
    return apply(p, l);
  }
  if (pos <= mid)
    modify(ls, l, mid, pos, v, dir);
  else
    modify(rs, mid + 1, r, pos, v, dir);
  pushup(p);
}
bool query(int p, int l, int r, int L, int R, int *nlf, int *nrf) {
  if (L > r || l > R) {
    *nlf = *nrf = 0;
    return false;
  }
  if (L <= l && r <= R) {
    *nlf = lf[p];
    *nrf = rf[p];
    return usl[p];
  }
  int nlf1 = 0, nlf2 = 0, nrf1 = 0, nrf2 = 0;
  bool usl1 = query(ls, l, mid, L, R, &nlf1, &nrf1);
  bool usl2 = query(rs, mid + 1, r, L, R, &nlf2, &nrf2);
  bool usl0 = false;
  merge_answers(usl1, usl2, nlf1, nrf1, nlf2, nrf2, &usl0, nlf, nrf);
  return usl0;
}

int main() {
  srand(time(NULL));
  pw[0] = 1ULL;
  for (int i = 1; i < Maxn; ++i)
    pw[i] = pw[i - 1] * BASE % MOD;
  scanf("%d%d", &n, &k);
  for (int i = 1; i <= n; ++i) {
    scanf("%d", a + i);
    lb[i] = (a[i] > 0);
    if (a[i] < 0) a[i] = -a[i];
  }
  build(1, 1, n);
  scanf("%d", &q);
  while (q--) {
    int op;
    scanf("%d", &op);
    if (op == 1) {
      int x, v;
      scanf("%d%d", &x, &v);
      modify(1, 1, n, x, v > 0 ? v : -v, v > 0);
    }
    else {
      int l, r;
      scanf("%d%d", &l, &r);
      int nlf = 0, nrf = 0;
      bool ans = query(1, 1, n, l, r, &nlf, &nrf);
      puts((ans || nlf || nrf) ? "No" : "Yes");
    }
    if (total_node >= T_RMaxn) {
      total_node = 0;
      build(1, 1, n);
    }
  }
  return 0;
}

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!