Digital image processing(数字图像处理)

て烟熏妆下的殇ゞ 提交于 2020-05-02 06:33:16

In computer science, digital image processing is the use of computer algorithms to perform image processing on digital images.[1] As a subcategory or field of digital signal processing, digital image processing has many advantages over analog image processing. It allows a much wider range of algorithms to be applied to the input data and can avoid problems such as the build-up of noise and signal distortion during processing. Since images are defined over two dimensions (perhaps more) digital image processing may be modeled in the form of multidimensional systems.

History

Many of the techniques of digital image processing, or digital picture processing as it often was called, were developed in the 1960s at the Jet Propulsion Laboratory, Massachusetts Institute of Technology, Bell Laboratories, University of Maryland, and a few other research facilities, with application to satellite imagery, wire-photo standards conversion, medical imaging, videophone, character recognition, and photograph enhancement.[2] The cost of processing was fairly high, however, with the computing equipment of that era. That changed in the 1970s, when digital image processing proliferated as cheaper computers and dedicated hardware became available. Images then could be processed in real time, for some dedicated problems such as television standards conversion. As general-purpose computers became faster, they started to take over the role of dedicated hardware for all but the most specialized and computer-intensive operations. With the fast computers and signal processors available in the 2000s, digital image processing has become the most common form of image processing and generally, is used because it is not only the most versatile method, but also the cheapest.

Digital image processing technology for medical applications was inducted into the Space Foundation Space Technology Hall of Fame in 1994.[3]

Tasks

Digital image processing allows the use of much more complex algorithms, and hence, can offer both more sophisticated performance at simple tasks, and the implementation of methods which would be impossible by analog means.

In particular, digital image processing is the only practical technology for:

Some techniques which are used in digital image processing include:

Digital image transformations

  • Filtering
  • Image padding in Fourier domain filtering
  • Filtering Code Examples
  • Affine transformations

Applications

  • Digital camera images
  • Film

See also

References

  1.  Pragnan Chakravorty, "What Is a Signal? [Lecture Notes]," IEEE Signal Processing Magazine, vol. 35, no. 5, pp. 175-177, Sept. 2018. https://doi.org/10.1109/MSP.2018.2832195
  2. Jump up^ Azriel Rosenfeld, Picture Processing by Computer, New York: Academic Press, 1969
  3. Jump up^ "Space Technology Hall of Fame:Inducted Technologies/1994". Space Foundation. 1994. Archived from the original on 4 July 2011. Retrieved 7 January 2010.
  4. Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
  5. Jump up^ Gonzalez, Rafael (2008). Digital Image Processing, 3rd. Pearson Hall. ISBN 9780131687288.
  6. Jump up^ A Brief, Early History of Computer Graphics in Film Archived 17 July 2012 at the Wayback Machine., Larry Yaeger, 16 August 2002 (last update), retrieved 24 March 2010

目录: Digital signal processing

TheoryDetection theory    Discrete signal   Estimation theory  Nyquist–Shannon sampling theorem

Sub-fieldsAudio signal processing  Digital image processing  Speech processing   Statistical signal processing

TechniquesAdvanced Z-transform  Bilinear transform  Constant-Q transform  Discrete Fourier transform (DFT)  Discrete-time Fourier transform (DTFT)  Impulse invariance  Integral transform  Laplace transform  Matched Z-transform method  Post's inversion formula  Starred transform  Z-transform  Zak transform

SamplingAliasing  Anti-aliasing filter  Downsampling  Nyquist rate / frequency  Oversampling  Quantization  Sampling rate  Undersampling  Upsampling

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!