python线程池ThreadPoolExecutor(上)(38)

你离开我真会死。 提交于 2020-04-30 04:06:21

 

 

    在前面的文章中我们已经介绍了很多关于python线程相关的知识点,比如 线程互斥锁Lock / 线程事件Event / 线程条件变量Condition 等等,而今天给大家讲解的是 线程池ThreadPoolExecutor,可能很多小伙伴会疑惑,threading 模块能创建线程,ThreadPoolExecutor 也能创建线程,两者都有什么区别呢?

    众所周知,程序中使用线程会提高运行效率,虽然线程是计算机的最小单位,但是线程的创建和使用一样会占用计算机资源和产生开销,一旦创建成千上万的线程,计算机一样会死机!一个合理的程序永远都是以消耗最少的资源干最多的事,就像公司老板,永远都想以最少的钱,招最少的人,干最多的事!

 

喷嚏

哪个二货在背后说我

一.线程池原理

    大家都使用过迅雷下载,当同时下载1000个任务甚至更多的时候,就算开通vip同时下载的数量也只有8个。如果同时创建1000个线程,首先对计算器的开销也很大,而且每次只运行8个线程,需要不停的创建和销毁,这样会显得很麻烦。

    而使用线程池ThreadPoolExecutor就可以解决上面的问题,其实只需要8个线程就行了,每个线程各分配一个任务,剩下的任务排队等待,当某个线程完成了任务的时候,排队任务就可以安排给这个线程继续执行,这就是所谓的线程池ThreadPoolExecutor原理!

线程池

 

二.线程池ThreadPoolExecutor函数介绍

    1.ThreadPoolExecutor构造实例的时候,传入max_workers参数来设置线程池中最多能同时运行的线程数目。

    2.使用submit函数来提交线程需要执行的任务(函数名和参数)到线程池中,并返回该任务的句柄(类似于文件、画图),注意submit()不是阻塞的,而是立即返回。

    3.通过submit函数返回的任务句柄,能够使用done()方法判断该任务是否结束。下面的例子可以看出,由于任务有2s的延时,在task1提交后立刻判断,task1还未完成,而在延时4s之后判断,task1就完成了。

    4.使用cancel()方法可以取消提交的任务,如果任务已经在线程池中运行了,就取消不了。这个例子中,线程池的大小设置为2,任务已经在运行了,所以取消失败。如果改变线程池的大小为1,那么先提交的是task1,task2还在排队等候,这是时候就可以成功取消。

    5.使用result()方法可以获取任务的返回值,注意:这个方法是阻塞的。

 

三.线程池ThreadPoolExecutor简单使用

# !usr/bin/env python
# -*- coding:utf-8 _*-
"""
@Author:何以解忧
@Blog(个人博客地址): shuopython.com
@WeChat Official Account(微信公众号):猿说python
@Github:www.github.com
 
@File:python_threadpool.py
@Time:2019/11/29 1queue5:25
 
@Motto:不积跬步无以至千里,不积小流无以成江海,程序人生的精彩需要坚持不懈地积累!
"""
 
from concurrent.futures import ThreadPoolExecutor
import time
 
# 参数times用来模拟下载的时间
def down_video(times):
    time.sleep(times)
    print("down video {}s finished".format(times))
    return times
 
executor = ThreadPoolExecutor(max_workers=2)
# 通过submit函数提交执行的函数到线程池中,submit函数立即返回,不阻塞
task1 = executor.submit(down_video, (3))
task2 = executor.submit(down_video, (2))
# done方法用于判定某个任务是否完成
print("任务1是否已经完成:",task1.done())
# cancel方法用于取消某个任务,该任务没有放入线程池中才能取消成功
print("取消任务2:",task2.cancel())
time.sleep(4)
print("任务1是否已经完成:",task1.done())
# result方法可以获取task的执行结果
print(task1.result())

 

输出结果:

 

    线程池的使用远不止如此,由于篇幅有限,关于线程池as_completed / map / wait 函数等我们留到下一篇文章继续介绍~~~

 

 

 

 

 

猜你喜欢:

    1.python线程队列Queue-FIFO

    2.python线程队列LifoQueue-LIFO

    3.python线程队列PriorityQueue-优先队列

    4.python线程的创建和参数传递

    5.python线程互斥锁Lock

    6.python线程事件Event

 

    转载请注明:猿说Python » python线程池ThreadPoolExecutor(上)

 

技术交流、商务合作请直接联系博主
扫码或搜索:猿说python
python教程公众号
猿说python
微信公众号 扫一扫关注
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!