问题
How do I implement bilinear interpolation for image data represented as a numpy array in python?
回答1:
I found many questions on this topic and many answers, though none were efficient for the common case that the data consists of samples on a grid (i.e. a rectangular image) and represented as a numpy array. This function can take lists as both x and y coordinates and will perform the lookups and summations without need for loops.
def bilinear_interpolate(im, x, y):
x = np.asarray(x)
y = np.asarray(y)
x0 = np.floor(x).astype(int)
x1 = x0 + 1
y0 = np.floor(y).astype(int)
y1 = y0 + 1
x0 = np.clip(x0, 0, im.shape[1]-1);
x1 = np.clip(x1, 0, im.shape[1]-1);
y0 = np.clip(y0, 0, im.shape[0]-1);
y1 = np.clip(y1, 0, im.shape[0]-1);
Ia = im[ y0, x0 ]
Ib = im[ y1, x0 ]
Ic = im[ y0, x1 ]
Id = im[ y1, x1 ]
wa = (x1-x) * (y1-y)
wb = (x1-x) * (y-y0)
wc = (x-x0) * (y1-y)
wd = (x-x0) * (y-y0)
return wa*Ia + wb*Ib + wc*Ic + wd*Id
来源:https://stackoverflow.com/questions/12729228/simple-efficient-bilinear-interpolation-of-images-in-numpy-and-python