近日,腾讯优图实验室在行人重识别(ReID)技术上再次取得突破,通过引入跨场景ReID,其ReID模型性能刷新了三大权威主流ReID公开数据集CUHK03,DUKE-MTMC和Market1501的记录,算法关键指标首位命中率(RANK1 Accuracy)和平均精度均值(Mean Average Precision)获得业内最好成绩。
表1: ReID公开数据集性能比较
|
Market1501 |
DukeMTMC |
CUHK03 |
|||
RANK1 |
MAP |
RANK1 |
MAP |
RANK1 |
MAP |
|
Tencent YouTu |
98.99% |
97.16% |
95.15% |
91.10% |
95.79% |
95.00% |
YITU |
98.60% |
96.60% |
94.75% |
90.02% |
95.00% |
94.23% |
HaiGe |
97.54% |
94.77% |
94.37% |
89.77% |
94.40% |
91.20% |
ZTE |
97.32% |
94.66% |
92.46% |
87.65% |
89.79% |
87.99% |
Dahua Tech |
96.76% |
91.98% |
91.52% |
83.96% |
87.73% |
85.72% |
Pensees |
96.73% |
89.89% |
92.01% |
82.51% |
84.57% |
82.81% |
WINSENSE |
96.59% |
91.77% |
91.79% |
83.81% |
82.79% |
81.91% |
CloudWalk |
96.40% |
91.14% |
91.74% |
83.31% |
82.28% |
81.06% |
Alibaba |
96.35% |
90.58% |
90.31% |
81.46% |
82.00% |
80.57% |
数据来源于网络
行人重识别(Person ReID)是指对不同摄像机捕捉到的行人图像建立身份对应关系(即关联行人ID),对行人实现在整个场景下的行动路线的全面刻画。简单来说,在看不到人脸的复杂多场景下也能通过体态等对人进行识别。相较于人脸识别技术,ReID对人体图像的遮挡、朝向和清晰度具有较高的鲁棒性,对摄像头的清晰度、架设位置、角度没有硬性要求。正因此ReID技术成为继人脸识别技术后计算机视觉领域又一热门课题。
鉴于ReID技术的技术优势和在各个领域的广泛应用前景,近年来,腾讯优图在这一方向上做出了大量技术投入和全面的技术布局,在CVPR、TPAMI、AAAI、IJCAI等国际顶级学术会议和期刊上发表了超过15篇相关领域学术论文。
图一:行人ReID示意图
虽然ReID技术已经过多年的演进,但现实中复杂多变的场景,也让跨场景识别(cross-domain person re-identification)成为ReID技术的一大难题,此次腾讯优图刷新三大数据集所引入的跨场景ReID,便是在此难点上进行了技术突破。
跨场景识别的难点在于,不同场景由于环境光照、摄像头角度、背景等因素,例如室内大型商场、小型门店的侧面和高俯角相机、室外道路、社区的强光和夜晚环境等,都会对人体图像的视觉特征造成影响。如何让ReID技术适应复杂多变的场景,实现跨场景行人图像的检索,是一项重大的技术挑战,也是实现室内外行人动线联动、全城联动的关键性技术。突破此技术难点对拓展ReID的落地场景和业态,实现大规模行人识别有巨大的作用。
图二:公开数据集MSMT17中的室内外行人图像视觉差异
为解决ReID技术难点,腾讯优图通过在遮挡匹配、全角度匹配、跨域检索等业务问题上的针对性优化,以及在模型结构、损失函数、训练算法等各项技术上的大量积累和创新,提出了一种跨场景行人重识别技术框架,采用基于图卷积和孪生网络的模型,使得神经网络对多朝向、多姿态等跨场景的人体具有更强的识别能力。这一技术能够为不同场景、不同拍摄角度和光照条件的行人视觉特征学习统一的特征表达,有效提升了ReID技术在行人图像室内外、跨场景的相互检索的精度。
图三:跨场景行人重识别
通过引入跨场景ReID,腾讯优图在三个数据集中刷新业内最好的水平,其中Market-1501数据集的RANK1达到98.99%。RANK1和MAP作为衡量ReID技术水平的核心指标,首位命中率高,就意味着算法能够在众多图像中准确找出最容易识别或匹配的那张。
在此基础上,腾讯优图的ReID算法在多场景行人图像相互检索也处于业界领先水平,在跨场景ReID数据集MSMT-17上超越已有算法达到业内顶尖水平。
表2:跨场景行人重识别性能比较
|
RANK1 |
MAP |
Tencent YouTu |
83.54% |
62.00% |
ABDNET (TAMU/中科大) |
82.30% |
60.80% |
OSNET |
78.70% |
52.90% |
DG-NET (NVIDIA/悉尼大学) |
77.20% |
52.30% |
DLCE |
60.48% |
31.58% |
腾讯优图的ReID技术不仅在相关数据集上已经取得了领先的性能,依托ReID技术的应用系统也已在多种场景达到商用水平并实现广泛落地。未来,随着跨场景行人重识别能力的逐步成熟,腾讯优图的ReID技术也将在更多的场景和业态实现价值。
来源:oschina
链接:https://my.oschina.net/u/3799788/blog/3739760