前言
上一篇我们介绍了如果使用Netty来开发一个简单的服务端和客户端,接下来我们来讨论如何使用解码器来解决TCP的粘包和拆包问题
TCP为什么会粘包/拆包
我们知道,TCP是以一种流的方式来进行网络转播的,当tcp三次握手简历通信后,客户端服务端之间就建立了一种通讯管道,我们可以想象成自来水管道,流出来的水是连城一片的,是没有分界线的。
TCP底层并不了解上层的业务数据的具体含义,它会根据TCP缓冲区的实际情况进行包的划分。
所以对于我们应用层而言。我们直观是发送一个个连续完整TCP数据包的,而在底层就可能会出现将一个完整的TCP拆分成多个包发送或者将多个包封装成一个大的数据包发送。
这就是所谓的TCP粘包和拆包。
当发生TCP粘包/拆包会发生什么情况
我们举一个简单例子说明:
客户端向服务端发送两个数据包:第一个内容为 123;第二个内容为456。服务端接受一个数据并做相应的业务处理(这里就是打印接受数据加一个逗号)。
那么服务端输出结果将会出现下面四种情况
服务端响应结果 | 结论 |
---|---|
123,456, | 正常接收,没有发生粘包和拆包 |
123456, | 异常接收,发生tcp粘包 |
123,4,56, | 异常接收,发生tcp拆包 |
12,3456, | 异常接收,发生tcp拆包和粘包 |
如何解决
主流的协议解决方案可以归纳如下:
- 消息定长,例如每个报文的大小固定为20个字节,如果不够,空位补空格;
- 在包尾增加回车换行符进行切割;
- 将消息分为消息头和消息体,消息头中包含表示消息总长度的字段;
- 更复杂的应用层协议。
对于之前描述的案例,在这里我们就可以采取方案1和方案3。
以方案1为例:我们每次发送的TCP包只有三个数字,那么我将报文设置为3个字节大小的,此时,服务器就会以三个字节为基准来接受包,以此来解决站包拆包问题。
Netty的解决之道
LineBasedFrameDecoder
废话不多说直接上代码
服务端
public class PrintServer {
public void bind(int port) throws Exception {
// 配置服务端的NIO线程组
EventLoopGroup bossGroup = new NioEventLoopGroup();
EventLoopGroup workerGroup = new NioEventLoopGroup();
try {
ServerBootstrap b = new ServerBootstrap();
b.group(bossGroup, workerGroup)
.channel(NioServerSocketChannel.class)
.option(ChannelOption.SO_BACKLOG, 1024)
.childHandler(new ChildChannelHandler());
// 绑定端口,同步等待成功
ChannelFuture f = b.bind(port).sync();
// 等待服务端监听端口关闭
f.channel().closeFuture().sync();
} finally {
// 优雅退出,释放线程池资源
bossGroup.shutdownGracefully();
workerGroup.shutdownGracefully();
}
}
private class ChildChannelHandler extends ChannelInitializer<SocketChannel> {
@Override
protected void initChannel(SocketChannel arg0) throws Exception {
arg0.pipeline().addLast(new LineBasedFrameDecoder(1024)); //1
arg0.pipeline().addLast(new StringDecoder()); //2
arg0.pipeline().addLast(new PrintServerHandler());
}
}
public static void main(String[] args) throws Exception {
int port = 8080;
new TimeServer().bind(port);
}
}
服务端Handler
public class PrintServerHandler extends ChannelHandlerAdapter {
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req); //将缓存区的字节数组复制到新建的req数组中
String body = new String(req, "UTF-8");
System.out.println(body);
String response= "打印成功";
ByteBuf resp = Unpooled.copiedBuffer(response.getBytes());
ctx.write(resp);
}
@Override
public void channelReadComplete(ChannelHandlerContext ctx) throws Exception {
ctx.flush();
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
ctx.close();
}
}
客户端
public class PrintClient {
public void connect(int port, String host) throws Exception {
EventLoopGroup group = new NioEventLoopGroup();
try {
Bootstrap b = new Bootstrap();
b.group(group)
.channel(NioSocketChannel.class)
.option(ChannelOption.TCP_NODELAY, true)
.handler(new ChannelInitializer<SocketChannel>() {
@Override
public void initChannel(SocketChannel ch)
throws Exception {
ch.pipeline().addLast(
new LineBasedFrameDecoder(1024)); //3
ch.pipeline().addLast(new StringDecoder()); //4
ch.pipeline().addLast(new PrintClientHandler());
}
});
ChannelFuture f = b.connect(host, port).sync();
f.channel().closeFuture().sync();
} finally {
// 优雅退出,释放NIO线程组
group.shutdownGracefully();
}
}
/**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int port = 8080;
new TimeClient().connect(port, "127.0.0.1");
}
}
客户端的Handler
public class PrintClientHandler extends ChannelHandlerAdapter {
private static final Logger logger = Logger
.getLogger(TimeClientHandler.class.getName());
private final ByteBuf firstMessage;
/**
* Creates a client-side handler.
*/
public TimeClientHandler() {
byte[] req = "你好服务端".getBytes();
firstMessage = Unpooled.buffer(req.length);
firstMessage.writeBytes(req);
}
@Override
public void channelActive(ChannelHandlerContext ctx) {
ctx.writeAndFlush(firstMessage);
}
@Override
public void channelRead(ChannelHandlerContext ctx, Object msg)
throws Exception {
ByteBuf buf = (ByteBuf) msg;
byte[] req = new byte[buf.readableBytes()];
buf.readBytes(req);
String body = new String(req, "UTF-8");
System.out.println("服务端回应消息 : " + body);
}
@Override
public void exceptionCaught(ChannelHandlerContext ctx, Throwable cause) {
// 释放资源
System.out.println("Unexpected exception from downstream : "
+ cause.getMessage());
ctx.close();
}
}
上诉代码逻辑与上一章代码逻辑相同,客户端接受服务端数据答应,并回复客户端信息,客户端接受到数据后打印数据。
我们观察代码可以发现,要想Netty解决粘包拆包问题,只需在编写服务端和客户端的pipeline上加上相应的解码器即可,上诉注释 1,2,3,4处。其余代码无需做任何修改。
LineBasedFrameDecoder+StringDecoder的组合就是按行切换的文本解码器,它被设计用来支持TCP的粘包和拆包。原理为:如果连续读取到最大长度后任然没有发现换行符,就会抛出异常,同时忽略掉之前督导的异常码流。
DelimiteBasedFrameDecoder
该解码器的可以自动完成以分割符作为码流结束标识的消息解码。(其实上一个解码器类似,如果指定分隔符为换行符,那么与上一个编码器的作用基本相同)
使用也很简单:
只需要修改服务端和客户端对应代码中的initChannel代码即可
public void initChannel(SocketChannel ch)
ByteBuf delimiter = Unpooled.copiedBuffer("_".getBytes()); //1
ch.pipeline().addLast(
new DelimiterBasedFrameDecoder(1024,
delimiter)); //2
ch.pipeline().addLast(new StringDecoder()); //3
ch.pipeline().addLast(new PrintHandler());
}
注释1:首先创建分隔符缓冲对象ByteBuf,并指定以"_"作为分隔符。
注释2:将分隔符缓冲对象ByteBuf传入DelimiterBasedFrameDecoder,并指定最大长度。
注释3:指定为字符串字节流
FixedLengthFrameDecoder
该解码器为固定长度解码器,它能够按照指定的长度对详细进行自动解码。
使用同样也很简单:
同样只需要修改服务端和客户端对应代码中的initChannel代码即可
public void initChannel(SocketChannel ch)
throws Exception {
ch.pipeline().addLast(new FixedLengthFrameDecoder(20));
ch.pipeline().addLast(new StringDecoder());
ch.pipeline().addLast(new PrintHandler());
}
});
这样我们就指定了,每接收20个字符大小的字符串字节流就将其看作一个包来经行处理。
总结
Netty已经在底层为我们做了很多事情,我们只需要简单的使用其提供好的解码器使用即可,源码内容待我研究归来,再进行展开,哈哈,完活~睡觉!
原文出处:https://www.cnblogs.com/zhxiansheng/p/10880196.html
来源:oschina
链接:https://my.oschina.net/u/4299308/blog/3263659