Python NLP - ValueError: could not convert string to float: 'UKN'

淺唱寂寞╮ 提交于 2020-04-18 12:35:02

问题


I'm trying to train a random forest regressor to predict the hourly wage of an employee given the job description supplied. Note, I've signed an NDA and cannot upload real data. The below "observation" is synthetic:

sample_row = {'job_posting_id': 'id_01',
 'buyer_vertical': 'Business Services',
 'currency': 'USD',
 'fg_onet_code': '43-9011.00',
 'jp_title': 'Computer Operator',
 'jp_description': "Performs information security-related risk and compliance activities, including but not limited to data protection, legal, and regulatory compliance. Evaluates and records Vendor Risk Assessment responses and supporting documentation in the eGRC tool. Assists with consolidating risk and compliance data for management reporting and metrics. Update and/or create process documentation and business requirements.        Skills Required   Experience   Last Used       Bachelor's Degree or Equivalent   4 years   Currently Using   Required    Experience in regulatory compliance and risk analysis, data privacy and other industry standards of an enterprise compliance program   1 year   1 year ago   Required    Understanding of industry security standards/best practices (e.g., NIST, UCF, ISO)   1 year   1 year ago   Required    Understanding of compliance and Information Security related laws and regulations (e.g., GLBA, PCI, HIPAA)   1 year   1 year ago   Required    Familiarity in computer operations required; (e.g. knowledge of Windows/Unix operating systems, authentication methods, firewalls, routers, web services, etc.)    1 year   2 years ago       Experience in performing Third Party Vendor Risk Assessments    1 year   1 year ago       Experience using RSA Archer eGRC application    1 year   1 year ago       Proficiency in Microsoft Office tools and applications   2 years   Currently Using   Required    Strong analytical, evaluative, and problem-solving abilities   2 years   Currently Using   Required    Excellent written and oral communication and listening skills   2 years   Currently Using   Required",
 'onet_salary': '22.04'}

I've tried to streamline my code through a user defined object:

class Model():

    def __init__(self,model_instance,data,text_col,target_col,test_size=0.3,random_state=1):
        self.model = model_instance
        self.text = data[text_col]
        self.target = data[target_col]
        self.test_size = test_size
        self.random_state = random_state

        self._split_data()
        self._fit()

    def _fit(self):
        from sklearn.pipeline import Pipeline
        from sklearn.feature_extraction.text import TfidfTransformer
        from sklearn.feature_extraction.text import CountVectorizer 

        self.pipeline = Pipeline([
            ('bow', CountVectorizer(analyzer=self._text_process)),  # strings to token integer counts
            ('tfidf', TfidfTransformer()),  # integer counts to weighted TF-IDF scores
            ('classifier', model),  # train given model on TF-IDF vectors
        ])
        self.pipeline.fit(self.text_train,self.value_train)
        self.preds = self.pipeline.predict(self.text_test)


    def _text_process(self,text):
        def remove_non_ascii(text):
            return ''.join(i for i in text if ord(i)<128)        
        text = remove_non_ascii(text)

        import string
        from nltk.corpus import stopwords
        nopunc = [char for char in text if char not in string.punctuation]
        nopunc = ''.join(nopunc)
        return [word.lower() for word in nopunc.split() if word.lower() not in stopwords.words('english')]           

    def _split_data(self):
        from sklearn.model_selection import train_test_split
        self.text_train, self.text_test, self.value_train, self.value_test = train_test_split(
            self.text, self.target, test_size=self.test_size, random_state=self.random_state)  

    def predict(self,observation):
        return self.pipeline.predict(observation)

    def performance_metrics(self):
        from sklearn.metrics import classification_report
        print(classification_report(self.preds,self.value_test))

Now when I call an instance of the class, I return the following error:

rfr = RandomForestRegressor()
m0 = Model(model_instance=rfr,data=unique_templates,text_col='jp_description',target_col='onet_salary')

>>>> ValueError: could not convert string to float: 'UKN'

What can I do to troubleshoot the issue? Is there a token in the test set that's not in the train set, which is being converted to 'UKN' - which triggers the error?

Any recommendations?

Edit 1: Expanded error message:

ValueError                                Traceback (most recent call last)
<ipython-input-69-d21643a194e8> in <module>
      1 rfr = RandomForestRegressor()
----> 2 m0 = Model(model_instance=rfr,data=unique_templates,text_col='jp_description',target_col='onet_salary')

<ipython-input-68-88d95cf81383> in __init__(self, model_instance, data, text_col, target_col, test_size, random_state)
      9 
     10         self._split_data()
---> 11         self._fit()
     12 
     13     def _fit(self):

<ipython-input-68-88d95cf81383> in _fit(self)
     21             ('classifier', model),  
     22         ])
---> 23         self.pipeline.fit(self.text_train,self.value_train)
     24         self.preds = self.pipeline.predict(self.text_test)
     25 

~/opt/anaconda3/lib/python3.7/site-packages/sklearn/pipeline.py in fit(self, X, y, **fit_params)
    354                                  self._log_message(len(self.steps) - 1)):
    355             if self._final_estimator != 'passthrough':
--> 356                 self._final_estimator.fit(Xt, y, **fit_params)
    357         return self
    358 

~/opt/anaconda3/lib/python3.7/site-packages/sklearn/ensemble/forest.py in fit(self, X, y, sample_weight)
    276 
    277         if getattr(y, "dtype", None) != DOUBLE or not y.flags.contiguous:
--> 278             y = np.ascontiguousarray(y, dtype=DOUBLE)
    279 
    280         if expanded_class_weight is not None:

~/opt/anaconda3/lib/python3.7/site-packages/numpy/core/_asarray.py in ascontiguousarray(a, dtype)
    177 
    178     """
--> 179     return array(a, dtype, copy=False, order='C', ndmin=1)
    180 
    181 

ValueError: could not convert string to float: 'UKN'

来源:https://stackoverflow.com/questions/60580392/python-nlp-valueerror-could-not-convert-string-to-float-ukn

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!