Ada - accessibility check raised

落花浮王杯 提交于 2020-04-16 05:50:12

问题


I have downloaded this program from Github: https://github.com/raph-amiard/ada-synth-lib

I have attemted the first example and I am presented with an exception. If anybody would be able to give me an insight into why this is, it would be massively appreciated. I've been stumped on this for a long time and I'm really keen to get this working.

The error I recieve is: raised PROGRAM_ERROR : waves.adb:110 accessibility check failed

Here is the main file:

with Waves; use Waves;
with Write_To_Stdout; 



procedure Main is



   Sine_Gen : constant access Sine_Generator := Create_Sine (Fixed (440.0));

begin


  Write_To_Stdout (Sine_Gen);


end Main;

Here is the waves.adb file

with Effects; use Effects;
with Interfaces; use Interfaces;

package body Waves is

   function Mod_To_Int (A : Unsigned_32) return Integer_32;

   -------------------
   -- Update_Period --
   -------------------

   procedure Update_Period
     (Self : in out Wave_Generator'Class; Buffer : in out Period_Buffer)
   is
   begin
      Self.Frequency_Provider.Next_Samples (Buffer);
      for I in Buffer'Range loop
         Buffer (I) :=
           Utils.Period_In_Samples
             (Frequency (Buffer (I)));
      end loop;
   end Update_Period;

   ------------
   -- Create --
   ------------

   function Create_Saw
     (Freq_Provider : Generator_Access) return access Saw_Generator
   is
   begin
      return new Saw_Generator'(Frequency_Provider => Freq_Provider,
                                Current => -1.0, others => <>);
   end Create_Saw;

   -----------------
   -- Next_Sample --
   -----------------

   overriding procedure Next_Samples
     (Self : in out Saw_Generator; Buffer : in out Generator_Buffer)
   is
      P_Buffer : Period_Buffer;
   begin
      Update_Period (Self, P_Buffer);
      for I in Buffer'Range loop
         Self.Step := 2.0 / Float (P_Buffer (I));
         Self.Current := Self.Current + Sample (Self.Step);
         if Self.Current > 1.0 then
            Self.Current := Self.Current - 2.0;
         end if;
         Buffer (I) := Self.Current;
      end loop;
   end Next_Samples;

   ------------
   -- Create --
   ------------

   function Create_Square
     (Freq_Provider : access Generator'Class) return access Square_Generator is
   begin
      return new Square_Generator'(Frequency_Provider =>
                                     Generator_Access (Freq_Provider),
                                   Is_High => True,
                                   Current_Sample => 0,
                                   others => <>);
   end Create_Square;

   -----------------
   -- Next_Sample --
   -----------------

   overriding procedure Next_Samples
     (Self : in out Square_Generator; Buffer : in out Generator_Buffer)
   is
      P_Buffer : Period_Buffer;
   begin
      Update_Period (Self, P_Buffer);
      for I in Buffer'Range loop
         Self.Current_Sample := Self.Current_Sample + 1;
         declare
            A : constant Period := Period (Self.Current_Sample)
              / P_Buffer (I);
         begin
            if A >= 1.0 then
               Self.Current_Sample := 0;
               Buffer (I) := 1.0;
            end if;
            Buffer (I) := (if A >= 0.5 then 1.0 else -1.0);
         end;
      end loop;
   end Next_Samples;

   ------------
   -- Create --
   ------------

   function Create_Sine
     (Freq_Provider : access Generator'Class) return access Sine_Generator
   is
      Ret : constant access Sine_Generator :=
        new Sine_Generator'(Frequency_Provider =>
                              Generator_Access (Freq_Provider),
                            Current_Sample => 0,
                            Current_P => 0.0,
                            others => <>);
   begin
      Ret.Current_P := 0.0;
      return Ret;
   end Create_Sine;

   -----------------
   -- Next_Sample --
   -----------------

   overriding procedure Next_Samples
     (Self : in out Sine_Generator; Buffer : in out Generator_Buffer)
   is
      P_Buffer : Period_Buffer;
   begin
      Update_Period (Self, P_Buffer);
      for I in Buffer'Range loop
         Self.Current_Sample := Self.Current_Sample + 1;
         if Period (Self.Current_Sample) >= Self.Current_P then
            Self.Current_P := P_Buffer (I) * 2.0;
            Self.Current_Sample := 0;
         end if;
         Buffer (I) :=
           Sample
             (Sin
                (Float (Self.Current_Sample)
                 / Float (Self.Current_P) * Pi * 2.0));
      end loop;
   end Next_Samples;

   ------------
   -- Create --
   ------------

   function Create_Chain
     (Gen : access Generator'Class;
      Sig_Procs : Signal_Processors
        := No_Signal_Processors) return access Chain
   is
      Ret : constant access Chain :=
        new Chain'(Gen => Generator_Access (Gen), others => <>);
   begin
      for P of Sig_Procs loop
         Ret.Add_Processor (P);
      end loop;
      return Ret;
   end Create_Chain;

   -------------------
   -- Add_Processor --
   -------------------

   procedure Add_Processor
     (Self : in out Chain; P : Signal_Processor_Access) is
   begin
      Self.Processors (Self.Nb_Processors) := P;
      Self.Nb_Processors := Self.Nb_Processors + 1;
   end Add_Processor;

   -----------------
   -- Next_Sample --
   -----------------

   overriding procedure Next_Samples
     (Self : in out Chain; Buffer : in out Generator_Buffer)
   is
      S : Sample;
   begin
      Self.Gen.Next_Samples (Buffer);
      for J in Buffer'Range loop
         S := Buffer (J);
         for I in 0 .. Self.Nb_Processors - 1 loop
            S := Self.Processors (I).Process (S);
         end loop;
         Buffer (J) := S;
      end loop;
   end Next_Samples;

   ---------
   -- LFO --
   ---------

   function LFO (Freq : Frequency; Amplitude : Float) return Generator_Access
   is
      Sin : constant Generator_Access := Create_Sine (Fixed (Freq));
   begin
      return new Attenuator'
        (Level => Amplitude,
         Source => new Transposer'(Source => Sin, others => <>), others => <>);
   end LFO;

   ------------
   -- Create --
   ------------

   function Create_ADSR
     (Attack, Decay, Release : Millisecond; Sustain : Scale;
      Source : access Note_Generator'Class := null) return access ADSR
   is
   begin
      return new ADSR'
        (State     => Off,
         Source    => Source,
         Attack    => Msec_To_Period (Attack),
         Decay     => Msec_To_Period (Decay),
         Release   => Msec_To_Period (Release),
         Sustain   => Sustain,
         Current_P => 0, others => <>);
   end Create_ADSR;

   -----------------
   -- Next_Sample --
   -----------------

   overriding procedure Next_Samples
     (Self : in out ADSR; Buffer : in out Generator_Buffer)
   is
      Ret : Sample;
   begin
      for I in Buffer'Range loop
         case Self.Source.Buffer (I).Kind is
         when On =>
            Self.Current_P := 0;
            Self.State := Running;
         when Off =>
            Self.State := Release;
            Self.Cur_Sustain := Scale (Self.Memo_Sample);
            Self.Current_P := 0;
         when No_Signal => null;
         end case;

         Self.Current_P := Self.Current_P + 1;

         case Self.State is
         when Running =>
            if Self.Current_P in 0 .. Self.Attack then
               Ret := Exp8_Transfer
                 (Sample (Self.Current_P) / Sample (Self.Attack));
            elsif
              Self.Current_P in Self.Attack + 1 .. Self.Attack + Self.Decay
            then
               Ret :=
                 Exp8_Transfer
                   (Float (Self.Decay + Self.Attack - Self.Current_P)
                    / Float (Self.Decay));

               Ret := Ret
               * Sample (1.0 - Self.Sustain)
                 + Sample (Self.Sustain);
            else
               Ret := Sample (Self.Sustain);
            end if;
            Self.Memo_Sample := Ret;
         when Release =>
            if Self.Current_P in 0 .. Self.Release then
               Ret :=
                 Exp8_Transfer
                   (Sample (Self.Release - Self.Current_P)
                    / Sample (Self.Release))
                 * Sample (Self.Cur_Sustain);
            else
               Self.State := Off;
               Ret := 0.0;
            end if;
         when Off  => Ret := 0.0;
         end case;

         Buffer (I) := Ret;
      end loop;
   end Next_Samples;

   ----------------------
   -- Next_Sample --
   ----------------------

   overriding procedure Next_Samples
     (Self : in out Pitch_Gen; Buffer : in out Generator_Buffer)
   is
      Ret : Sample;
   begin
      if Self.Proc /= null then
         Self.Proc.Next_Samples (Buffer);
      end if;

      for I in Buffer'Range loop
         case Self.Source.Buffer (I).Kind is
         when On =>
            Self.Current_Note := Self.Source.Buffer (I).Note;
            Self.Current_Freq :=
              Note_To_Freq (Self.Current_Note, Self.Relative_Pitch);
         when others => null;
         end case;

         Ret := Sample (Self.Current_Freq);

         if Self.Proc /= null then
            Ret := Ret + Buffer (I);
         end if;

         Buffer (I) := Ret;
      end loop;
   end Next_Samples;

   ------------------
   -- Create_Noise --
   ------------------

   function Create_Noise return access Noise_Generator
   is
      N : constant access Noise_Generator := new Noise_Generator;
   begin
      return N;
   end Create_Noise;

   F_Level : constant Sample := 2.0 / Sample (16#FFFFFFFF#);
   G_X1 : Unsigned_32 := 16#67452301#;
   G_X2 : Unsigned_32 := 16#EFCDAB89#;
   Z : constant := 2 ** 31;

   ----------------
   -- Mod_To_Int --
   ----------------

   function Mod_To_Int (A : Unsigned_32) return Integer_32 is
      Res : Integer_32;
   begin
      if A < Z then
         return Integer_32 (A);
      else
         Res := Integer_32 (A - Z);
         Res := Res - (Z - 1) - 1;
         return Res;
      end if;
   end Mod_To_Int;

   ------------------
   -- Next_Samples --
   ------------------

   overriding procedure Next_Samples
     (Self : in out Noise_Generator; Buffer : in out Generator_Buffer)
   is
      pragma Unreferenced (Self);
   begin
      for I in Buffer'Range loop
         G_X1 := G_X1 xor G_X2;
         Buffer (I) := Sample (Mod_To_Int (G_X2)) * F_Level;
         G_X2 := G_X2 + G_X1;
      end loop;
   end Next_Samples;

   ------------------
   -- Next_Samples --
   ------------------

   overriding procedure Next_Samples
     (Self : in out Fixed_Gen; Buffer : in out Generator_Buffer) is
   begin

      if Self.Proc /= null then
         Self.Proc.Next_Samples (Buffer);
         for I in Buffer'Range loop
            Buffer (I) := Self.Val + Buffer (I);
         end loop;
      else
         for I in Buffer'Range loop
            Buffer (I) := Self.Val;
         end loop;
      end if;
   end Next_Samples;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out ADSR) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Source);
      Self.Memo_Sample := 0.0;
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Saw_Generator) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Frequency_Provider);
      Self.Current := -1.0;
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Square_Generator) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Frequency_Provider);
      Self.Current_Sample := 0;
      Self.Is_High := True;


   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Sine_Generator) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Frequency_Provider);
      Self.Current_Sample := 0;
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Noise_Generator) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Frequency_Provider);
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Pitch_Gen) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Source);
      Reset_Not_Null (Self.Proc);
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Fixed_Gen) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Proc);
   end Reset;

   -----------
   -- Reset --
   -----------

   overriding procedure Reset (Self : in out Chain) is
   begin
      Base_Reset (Self);
      Reset_Not_Null (Self.Gen);
   end Reset;

   -----------
   -- Fixed --
   -----------

   function Fixed
     (Freq        : Frequency;
      Modulator   : Generator_Access := null;
      Name        : String := "";
      Min         : Float := 0.0;
      Max         : Float := 5_000.0;
      Param_Scale : Param_Scale_T := Linear)
      return access Fixed_Gen
   is
   begin
      return new
        Fixed_Gen'
          (Val         => Sample (Freq),
           Proc        => Modulator,
           Name        => To_Unbounded_String (Name),
           Min         => Min,
           Max         => Max,
           Param_Scale => Param_Scale,
           others      => <>);
   end Fixed;

   ---------------
   -- Set_Value --
   ---------------

   overriding procedure Set_Value
     (Self : in out Fixed_Gen; I : Natural; Val : Float)
   is
      pragma Unreferenced (I);
   begin
      Self.Val := Sample (Val);
   end Set_Value;

   ---------------
   -- Set_Value --
   ---------------

   overriding procedure Set_Value
     (Self : in out ADSR; I : Natural; Val : Float)
   is
   begin
      case I is
         when 0 => Self.Attack := Sec_To_Period (Val);
         when 1 => Self.Decay :=  Sec_To_Period (Val);
         when 2 => Self.Sustain := Scale (Val);
         when 3 => Self.Release := Sec_To_Period (Val);
         when others => raise Constraint_Error;
      end case;
   end Set_Value;

end Waves;

And lastly, the write_to_stdout.adb file

with Utils; use Utils;
with GNAT.OS_Lib;

procedure Write_To_Stdout (G : access Generator'Class)
is
   function Sample_To_Int16 is new Sample_To_Int (Short_Integer);
   Int_Smp : Short_Integer := 0;
   Ignore  : Integer;
   Buffer  : Generator_Buffer;
begin

   loop
      Next_Steps;
      G.Next_Samples (Buffer);

      for I in Buffer'Range loop
         Int_Smp := Sample_To_Int16 (Buffer (I));
         Ignore := GNAT.OS_Lib.Write
           (GNAT.OS_Lib.Standout, Int_Smp'Address, Int_Smp'Size / 8);
      end loop;

      exit when Sample_Nb > 10_000_000;
      Sample_Nb := Sample_Nb + Generator_Buffer_Length;
   end loop;

end Write_To_Stdout;

Thank you for reading, and any guidance into solving this would be most appreicated.

Cheers,

Lloyd


回答1:


The function in question :

   function Create_Sine
     (Freq_Provider : access Generator'Class) return access Sine_Generator
   is
      Ret : constant access Sine_Generator :=
        new Sine_Generator'(Frequency_Provider =>
                              Generator_Access (Freq_Provider),
                            Current_Sample => 0,
                            Current_P => 0.0,
                            others => <>);
   begin
      Ret.Current_P := 0.0;
      return Ret;
   end Create_Sine;

creates a new object, accessed by an access type in its local scope and returns a copy of the access. In this case it is probably OK but there is the possibility of similar cases where the object itself goes out of scope when the function returns, leaving a dangling access.

In this case it's probably overcautious since the only reference to the object is that returned, but the accessibility checks prohibit this whole class of potentially bug-ridden constructs. I say "probably" because the object could theoretically be allocated on the stack by some compilers, or in a locally owned storage pool rather than "the heap" for more reliable object lifetime management.

There is a solution : create the access in place in the returned object, rather than in an immediately discarded local object. Ada-2005 and later provide an "extended return" construct to allow this. It looks something like:

   function Create_Sine
     (Freq_Provider : access Generator'Class) return access Sine_Generator
   is
   begin
      return Ret : constant access Sine_Generator :=
        new Sine_Generator'( Frequency_Provider =>
                              Generator_Access (Freq_Provider),
                            Current_Sample => 0,
                            Current_P => 0.0,
                            others => <>) 
        do
            -- initialisation actions here
            Ret.Current_P := 0.0;
        end return;
   end Create_Sine;

not tested! but any of the usual sources should keep you straight now you know its name.

Here the caller owns the access type being initialised with the new object, so there is no danger of the access type out-living the accessed object.

There may be a better answer to this question overall. I have just addressed the immediate point, but the wider question is, do you need an access type here at all? In Ada the answer usually (but not always) is No. There are many cases where programmers coming from other languages just reach for the pointers, when there is a simpler or better way of doing things in Ada.



来源:https://stackoverflow.com/questions/60777489/ada-accessibility-check-raised

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!