问题
I've been banging my head against the wall trying to learn about curried functions. Here's what I understand so far; suppose I have a function:
fun curry (a b c) = a * b * c;
or
fun curry a b c = a * b * c;
In ML, I can only have one argument so the first function uses a 3-tuple to get around this / get access to a
, b
, and c
.
In the second example, what I really have is:
fun ((curry a) b) c
where curry a
returns a function, and
(curry a) b
returns a function and ((curry a) b) c
returns another function. A few questions:
1) Why is this preferable to using a tuple? Is it just that I can make use of the intermediate functions curry a
and (curry a) b
. My book mentions partial instantiation but not totally clear on it.
2) How do you determine what function curry a
, (curry a) b
actually do? ((curry a) b)
c is just a * b * c
, right?
Thanks for any help clearing this up,
bclayman
回答1:
There is an element of taste in using curried vs. non-curried functions. I don't use curried functions as a matter of course. For example, if were to write a gcd function I would tend to write it as a function designed to operated on a tuple simply because I seldom have use for a defined partially-instantiated gcd function.
Where curried functions are really useful is in defining higher-order functions. Consider map
. It is easy enough to write a non-curried version:
fun mymap (f,[])= []
| mymap (f,x::xs) = f(x)::mymap(f,xs)
It has type fn : ('a -> 'b) * 'a list -> 'b list
taking a tuple consisting of a function between two types and a list of elements of the input type, returning a list of element of the output type. There is nothing exactly wrong with this function, but -- it isn't the same as SML's map
. The built-in map has type
fn : ('a -> 'b) -> 'a list -> 'b list
which is curried. What does the curried function do for us? For one thing, it can be thought of as a function transformer. You feed map a function, f
, designed to operate on elements of a given type and it returns as function map f
which is designed to operate on whole lists of elements. For example, if
fun square(x) = x*x;
Is a function designed to square ints
then val list_square = map square
defines list_square
as a function which takes a list of elements and returns the list of their squares.
When you use map
in a call like map square [1,2,3]
you have to remember that function application is left associative so that this parses as
'(map square) [1,2,3]. The function
map square*is* the same as the function
list_squareI defined above. The invocation
map square [1,2,3]takes that function and applies it to
[1,2,3]yielding
[1,4,9]`.
The curried version is really nice if you want to define a function, metamap
, which can be used to apply functions to each element of a matrix thought of as a list of lists. Using the curried version it is as simple as:
fun metamap f = map (map f)
used like (in the REPL):
- metamap square [[1,2],[3,4]];
val it = [[1,4],[9,16]] : int list list
The logic is that map
lifts a function from applying to elements to applying to lists. If you want a function to apply to lists of lists (e.g. matrices) just apply map
twice -- which is all metamap
does. You could, of course, write a version a non-curried version of metamap
using our noncurried mymap
function (it wouldn't even be all that hard), but you wouldn't be able to approach the elegance of the 1-line definition above.
来源:https://stackoverflow.com/questions/31840307/curried-functions-in-standard-ml