CF1292C Xenon's Attack on the Gangs

匆匆过客 提交于 2020-04-12 17:58:49

题目链接:https://codeforces.com/problemset/problem/1292/C

题意

在一颗有n个节点的树上,给每个边赋值,所有的值都在\([0,n-2]\)内并且不重复,也就是一条边一个权值,令\(mex(u,v)\)表示从\(u到v\)这条简单路径上没有出现过的最小自然数,要求使所有路径的\(mex\)之和最大。

分析

最开始我一看这个题,统计答案的时候好像就需要\(O(N^2)\),那这个题好像统计个答案就可能会T?当我看见时限是\(3s\)的时候我就知道我想多了,分析时间复杂度的时候提前看一下时限,防止因看错时限分析错时间复杂度。
首先这个边的权值肯定有规律,不然枚举权值时间复杂度会很高,最开始我想的是从每个边开始\(dfs\)一下把经过次数最多的边设成0,然后依次类推,每次\(dfs\)不访问重复经过的点,发现存在一个什么问题呢,就是从不同的点开始\(dfs\)造成的结果不一样,所以这样不可行,不妨先画一条链来看看。

如果已经放好了\(0~x-1\),考虑\(x\)放哪个位置,如果我把\(x\)放到\(5-v\)上,那么\(mex(u,5)\)就会是\(x\),然后只有\(mex(u,v)\)会等于\(x+1\),但要是把\(x\)放到\(u-1\)\(4-5\)上,\(mex\)等于\(x+1\)的就不会只是\(mex(u,v)\)了。链上是这样,树上当然也是,所以\(x\)放到链的两端会使结果更优。

也就是这样,对于\(u-v\)的路径,4和5放在最两端时结果会更优,然后对最大值5的位置进行分类讨论,就可以求解出答案。
还有一个问题,如果我真的去把每个\(mex\)相加,的确很不现实,根据之前做过的一些类似的题,直接加上\(x\)相当于在\(0~x-1\)各加1,转化成对答案的贡献,也就是\(size_u*size_v\),这样求解起来就会相对简单。
之前已经讲过,从不同的点开始\(dfs\)的结果是不同的,所以不能像平常那样统计\(size\),而是应该在加一维表示根,这样才能保证得到我们想要的\(size\),因为要枚举最大权值所在的地方,所以还要记录每个节点的父亲,同样也要记录根。
不妨用\(dp_{u,v}\)表示把\(0~x-1\)放到\(u-v\)的最大答案,\(s_{u,v}\)表示\(v\)\(u\)为根时的子树大小,\(fa_{u,v}\)表示\(v\)\(u\)为根时的父亲。于是有







\[dp_{u,v}=max(dp_{fa_{u,v},u},dp_{fa_{v,u},v})+s_{u,v}*s_{v,u} \]

然后此题就能得解,注意开long long

#include<iostream>
#define ll long long
using namespace std;
const int N=3e3+10;
struct Edge{
    int to,nxt;
}e[N<<1];
int Head[N],len;
void Ins(int a,int b){
    e[++len].to=b;e[len].nxt=Head[a];Head[a]=len;
}
int rt;ll s[N][N],dp[N][N],f[N][N];
void dfs(int u){
    s[rt][u]=1;
    for(int i=Head[u];i;i=e[i].nxt){
        int v=e[i].to;
        if(v==f[rt][u])continue;
        f[rt][v]=u;
        dfs(v);
        s[rt][u]+=s[rt][v];
    }
}
ll calc(int u,int v){
    if(u==v)return 0;
    if(dp[u][v])return dp[u][v];
    return (dp[u][v]=max(calc(f[u][v],u),calc(f[v][u],v))+s[u][v]*s[v][u]);
}
int main(){
    int n;
    cin>>n;
    for(int i=1;i<n;i++){
        int a,b;
        cin>>a>>b;
        Ins(a,b);Ins(b,a);
    }
    for(int i=1;i<=n;i++)rt=i,dfs(i);
    ll ans=0;
    for(int i=1;i<=n;i++)
    for(int j=1;j<=n;j++)
        ans=max(ans,calc(i,j));
    cout<<ans;
}
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!