文章目录
1.为什么要建立索引?
假设MongoDB person集合里包含插入了4个文档,其存储后位置信息如下(为方便描述,文档省去_id字段)
位置信息 | 文档 |
---|---|
pos1 | {“name” : “jack”, “age” : 19 } |
pos2 | {“name” : “rose”, “age” : 20 } |
pos3 | {“name” : “jack”, “age” : 18 } |
pos4 | {“name” : “tony”, “age” : 21} |
pos5 | {“name” : “adam”, “age” : 18} |
假设现在有个查询 db.person.find( {age: 18} ), 查询所有年龄为18岁的人,这时需要遍历所有的文档(『全表扫描』),根据位置信息读出文档,对比age字段是否为18。当然如果只有4个文档,全表扫描的开销并不大,但如果集合文档数量到百万、甚至千万上亿的时候,对集合进行全表扫描开销是非常大的,一个查询耗费数十秒甚至几分钟都有可能。
如果想加速 db.person.find( {age: 18} ),就可以考虑对person表的age字段建立索引。
db.person.createIndex( {age: 1} ) //
按age字段创建升序索引
建立索引后,MongoDB会额外存储一份按age字段升序排序的索引数据,索引结构类似如下,索引通常采用类似btree的结构持久化存储,以保证从索引里快速(O(logN)的时间复杂度)找出某个age值对应的位置信息,然后根据位置信息就能读取出对应的文档。
age | 位置信息 |
---|---|
18 | pos3 |
18 | pos5 |
19 | pos1 |
20 | pos2 |
21 | pos4 |
简单的说,索引就是将文档按照某个(或某些)字段顺序组织起来,以便能根据该字段高效的查询。有了索引,至少能优化如下场景的效率:
- 查询,比如查询年龄为18的所有人
- 更新/删除,将年龄为18的所有人的信息更新或删除,因为更新或删除时,需要根据条件先查询出所有符合条件的文档,所以本质上还是在优化查询
- 排序,将所有人的信息按年龄排序,如果没有索引,需要全表扫描文档,然后再对扫描的结果进行排序
// 查询集合的索引信息
mongo-9552:PRIMARY> db.person.getIndexes() // 查询集合的索引信息
[
{
"ns" : "test.person", // 集合名
"v" : 1, // 索引版本
"key" : { // 索引的字段及排序方向
"_id" : 1 // 根据_id字段升序索引
},
"name" : "_id_" // 索引的名称
}
]
2.索引的分类有哪些?
MongoDB支持多种类型的索引,包括单字段索引、复合索引、多key索引、文本索引等,每种类型的索引有不同的使用场合。
2.1 _id索引
_id索引是系统默认建立的索引,默认是按1(升序)。
众所周知,MongoDB默认会为插入的文档生成_id字段(如果应用本身没有指定该字段),_id是文档唯一的标识,为了保证能根据文档id快递查询文档,MongoDB默认会为集合创建_id字段的索引。
2.2 单字段索引 (Single Field Index)
db.person.createIndex( {age: 1} )
上述语句针对age创建了单字段索引,其能加速对age字段的各种查询请求,是最常见的索引形式,MongoDB默认创建的id索引也是这种类型。
{age: 1} 代表升序索引,也可以通过{age: -1}来指定降序索引,对于单字段索引,升序/降序效果是一样的。
2.2 多键索引(Multikey Index)
当索引的字段为数组时,创建出的索引称为多key索引,多key索引会为数组的每个元素建立一条索引,比如person表加入一个habbit字段(数组)用于描述兴趣爱好,需要查询有相同兴趣爱好的人就可以利用habbit字段的多key索引。
{"name" : "jack", "age" : 19, habbit: ["football, runnning"]}
db.person.createIndex( {habbit: 1} ) // 自动创建多key索引
db.person.find( {habbit: "football"} )
2.3 复合索引 (Compound Index)
复合索引是Single Field Index的升级版本,它针对多个字段联合创建索引,先按第一个字段排序,第一个字段相同的文档按第二个字段排序,依次类推,如下针对age, name这2个字段创建一个复合索引。
db.person.createIndex( {age: 1, name: 1} )
复合索引能满足的查询场景比单字段索引更丰富,不光能满足多个字段组合起来的查询,比如
db.person.find( {age: 18, name: “jack”} )
也能满足所有能匹配符合索引前缀的查询,这里{age: 1}即为{age: 1, name: 1}的前缀,所以类似db.person.find( {age: 18} )的查询也能通过该索引来加速;但db.person.find( {name: “jack”} )则无法使用该复合索引。如果经常需要根据『name字段』以及『name和age字段组合』来查询,则应该创建如下的复合索引
db.person.createIndex( {name: 1, age: 1} )
除了查询的需求能够影响索引的顺序,字段的值分布也是一个重要的考量因素,即使person集合所有的查询都是『name和age字段组合』(指定特定的name和age),字段的顺序也是有影响的。
age字段的取值很有限,即拥有相同age字段的文档会有很多;而name字段的取值则丰富很多,拥有相同name字段的文档很少;显然先按name字段查找,再在相同name的文档里查找age字段更为高效。
2.4 文本索引(Text Index)
《文本索引》
能解决快速文本查找的需求,比如有一个博客文章集合,需要根据博客的内容来快速查找,则可以针对博客内容建立文本索引。
2.5 哈希索引(Hashed Index)
指按照某个字段的hash值来建立索引,目前主要用于MongoDB Sharded Cluster的Hash分片,hash索引只能满足字段完全匹配的查询,不能满足范围查询等。
2.6 地理位置索引(Geospatial Index)
能很好的解决O2O的应用场景,比如『查找附近的美食』、『查找某个区域内的车站』等。
2.7 其它索引
MongoDB除了支持多种不同类型的索引,还能对索引定制一些特殊的属性。
- 唯一索引 (unique index):保证索引对应的字段不会出现相同的值,比如_id索引就是唯一索引
- TTL索引(过期索引):可以针对某个时间字段,指定文档的过期时间(经过指定时间后过期 或 在某个时间点过期)
- 部分索引 (partial index): 只针对符合某个特定条件的文档建立索引,3.2版本才支持该特性
- 稀疏索引(sparse index): 只针对存在索引字段的文档建立索引,可看做是部分索引的一种特殊情况
3.索引优化
3.1 db profiler
MongoDB支持对DB的请求进行profiler,目前支持3种级别的profiler。
- 0: 不开启profiling
- 1: 将处理时间超过某个阈值(默认100ms)的请求都记录到DB下的system.profile集合 (类似于mysql、redis的slowlog)
- 2: 将所有的请求都记录到DB下的system.profile集合(生产环境慎用)
通常,生产环境建议使用1级别的profiling,并根据自身需求配置合理的阈值,用于监测慢请求的情况,并及时的做索引优化。
如果能在集合创建的时候就能『根据业务查询需求决定应该创建哪些索引』,当然是最佳的选择;但由于业务需求多变,要根据实际情况不断的进行优化。索引并不是越多越好,集合的索引太多,会影响写入、更新的性能,每次写入都需要更新所有索引的数据;所以你system.profile里的慢请求可能是索引建立的不够导致,也可能是索引过多导致。
3.2 查询计划
索引已经建立了,但查询还是很慢怎么破?这时就得深入的分析下索引的使用情况了,可通过查看下详细的查询计划来决定如何优化。通过执行计划可以看出如下问题
- 根据某个/些字段查询,但没有建立索引
- 根据某个/些字段查询,但建立了多个索引,执行查询时没有使用预期的索引。
建立索引前,db.person.find( {age: 18} )必须执行COLLSCAN,即全表扫描。
常见stage的类型:
- COLLSCAN:全表扫描
- IXSCAN:索引扫描
- FETCH:根据索引去检索指定document
- SHARD_MERGE:将各个分片返回数据进行merge
- SORT:表明在内存中进行了排序
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "COLLSCAN",
"filter" : {
"age" : {
"$eq" : 18
}
},
"direction" : "forward"
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
建立索引后,通过查询计划可以看出,先进行IXSCAN(从索引中查找),然后FETCH,读取出满足条件的文档。
mongo-9552:PRIMARY> db.person.find({age: 18}).explain()
{
"queryPlanner" : {
"plannerVersion" : 1,
"namespace" : "test.person",
"indexFilterSet" : false,
"parsedQuery" : {
"age" : {
"$eq" : 18
}
},
"winningPlan" : {
"stage" : "FETCH",
"inputStage" : {
"stage" : "IXSCAN",
"keyPattern" : {
"age" : 1
},
"indexName" : "age_1",
"isMultiKey" : false,
"isUnique" : false,
"isSparse" : false,
"isPartial" : false,
"indexVersion" : 1,
"direction" : "forward",
"indexBounds" : {
"age" : [
"[18.0, 18.0]"
]
}
}
},
"rejectedPlans" : [ ]
},
"serverInfo" : {
"host" : "localhost",
"port" : 9552,
"version" : "3.2.3",
"gitVersion" : "b326ba837cf6f49d65c2f85e1b70f6f31ece7937"
},
"ok" : 1
}
4. 索引管理
4.1 建立索引
db.users.createIndex({"name":1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 1,
"numIndexesAfter" : 2,
"ok" : 1
}
给name,age字段创建组合索引
db.users.createIndex({"name":1,"age":1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 3,
"numIndexesAfter" : 4,
"ok" : 1
}
在后台给age字段创建索引
db.users.createIndex({age:1},{background:1})
{
"createdCollectionAutomatically" : false,
"numIndexesBefore" : 4,
"numIndexesAfter" : 5,
"ok" : 1
}
在后台创建索引的原因:
在前台创建索引期间会锁定数据库,会导致其它操作无法进行数据读写,在后台创建索引是,会定期释放写锁,从而保证其它操作的运行,但是后台操作会在耗时更长,尤其是在频繁进行写入的服务器上。
4.2 查询集合索引
MongoDB提供的查看索引信息的方法:
- getIndexes()方法可以用来查看集合的所有索引,
- getIndexKeys()方法查看索引键。
- totalIndexSize()查看集合索引的总大小,
- getIndexSpecs()方法查看集合各索引的详细信息
例如 查看索引集合大小
db.getCollection('chongqing').totalIndexSize()
4.3 删除集合索引
db.getCollection('chongqing').dropIndexes()
不再需要的索引,我们可以将其删除,mongodb提供两种删除索引的方法:
- dropIndex(‘索引名’)方法用于删除指定的索引
- dropIndexes()方法用于删除全部的索引
例1:dropIndex()的用法
db.users.dropIndex("name_1")
{ "nIndexesWas" : 5, "ok" : 1 }
db.users.dropIndex("name_1_age_1")
{ "nIndexesWas" : 4, "ok" : 1 }
db.users.getIndexSpecs()
我们可以看到,name字段的索引和name与age字段的组合索引皆被删除
例2:dropIndexes()的用法
db.users.dropIndexes()
{
"nIndexesWas" : 3,
"msg" : "non-_id indexes dropped for collection",
"ok" : 1
}
db.users.getIndexSpecs()
在使用了dropIndexes()方法后,我们之前建的所有索引都被删除掉了
4.4 索引重建
我们之前把users的索引全部删除了,现在在name字段上建立一个正序索引,然后在name字段上重建倒序索引,可以看到重建索引是把之前name字段的索引删掉再新建一个索引的,重建之前name字段还是只有一个索引.
db.users.createIndex({name:1})
db.users.reIndex({name:-1})
来源:oschina
链接:https://my.oschina.net/u/4258425/blog/3225287