【数据结构与算法】动态规划——最小路径和(普通矩阵、三角形两题)

◇◆丶佛笑我妖孽 提交于 2020-04-06 13:00:27

最小路径和

LeetCode:最小路径和

题目描述:

给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

说明:每次只能向下或者向右移动一步。

示例:

输入:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 7
解释: 因为路径 1→3→1→1→1 的总和最小。

思想:

动态规划,可以用原数组作为dp数组

代码:

class Solution {
    public int minPathSum(int[][] grid) {
        int i=0,j=0;
        for(i=0;i<grid.length;++i){
            for(j=0;j<grid[0].length;++j){
                if(i>0&&j>0){
                    grid[i][j]+= Math.min(grid[i-1][j],grid[i][j-1]);
                }else{
                    grid[i][j]+= (i==0?0:grid[i-1][j]) + (j==0?0:grid[i][j-1]);
                }
            }
        }
        return grid[i-1][j-1];
    }
}

三角形最小路径和

LeetCode:三角形最小路径和

题目描述:

给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。

如果你可以只使用 O(n) 的额外空间(n 为三角形的总行数)来解决这个问题,那么你的算法会很加分。

示例:

例如给定三角形
[
     [2],
    [3,4],
   [6,5,7],
  [4,1,8,3]
]
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。

思想:

自底向上,修改dp数组

代码:

第一种方法:在原数组上修改。这样貌似效率不高。

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        for(int i=triangle.size()-2;i>=0;--i){
            for(int j=0;j<i+1;++j){
                triangle.get(i).set(j,triangle.get(i).get(j)+Math.min(triangle.get(i+1).get(j+1),triangle.get(i+1).get(j)));
            }
        }
        return triangle.get(0).get(0);
    }
}

第二种方法:设置dp数组,修改dp数组;注意这很巧妙,每一次修改都不会影响下次循环的判断;其次,每次循环,最后一个数都不会修改它,直到最后一轮,加上顶部的数,得到最终结果dp[0]。

class Solution {
    public int minimumTotal(List<List<Integer>> triangle) {
        int len = triangle.size();
        int[] dp=new int[len];
        for(int i=0;i<len;++i){
            dp[i]=triangle.get(len-1).get(i);
        }
        for(int i=len-2;i>=0;--i){
            for(int j=0;j<i+1;++j){
                dp[j] = Math.min(dp[j],dp[j+1]) + triangle.get(i).get(j);
            }
        }
        return dp[0];
    }
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!