1 确保环境
确保已经正确安装了keras, tensorflow/theano, cuda
在MacOS下面安装CUDA请参考:
Ubuntu下面安装CUDA请参考:
配置深度学习环境的最后一步
2 切换gpu
来自官方的介绍How do I use keras with gpu
If you are running on the TensorFlow backend, your code will automatically run on GPU if any available GPU is detected. If you are running on the Theano backend, you can use one of the following methods:
Method 1: use Theano flags.
THEANO_FLAGS=device=gpu,floatX=float32 Python my_keras_script.py
The name ‘gpu’ might have to be changed depending on your device’s identifier (e.g. gpu0, gpu1, etc).Method 2: set up your .theanorc: Instructions
sudo vim ~/.theanorc
add these content
[global]
device=gpu
floatX=float32Method 3: manually set theano.config.device, theano.config.floatX at the beginning of your code:
import theano
theano.config.device = ‘gpu’
theano.config.floatX = ‘float32’
使用下面这个脚本来验证是否启动GPU:
from theano import function, config, shared, sandbox
import theano.tensor as T
import numpy
import time
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen), config.floatX))
f = function([], T.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in xrange(iters):
r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters, t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op, T.Elemwise) for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
感谢超级杰哥
http://blog.csdn.net/autoliuweijie/article/details/53157169
来源:oschina
链接:https://my.oschina.net/u/4401867/blog/3216580