1.序列化概述
1.1 什么是序列化
序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输;
反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象;
1.2 为什么要序列化
一般来说,“活的”对象只生存在内存中,关机断电就没有了;而且“活的”对象只能由本地的进程使用,不能发送到网络上的另外一台计算机;然而序列化可以存储“活的”对象,可以将“活的”对象发送到远程计算机;
1.3 为甚不用java的序列化
java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种效验信息,Header,继承体系等),不便于在网络中高效传输,所以,hadoop自己开发了一套序列化机制(Writable);
1.4 hadoop序列化特点
1.4.1 紧凑:高效使用存储空间;
1.4.2 快速:读写数据的额外开销小;
1.4.3 可扩展:随着通信协议的升级而可升级;
1.4.4 互操作:支持多语言的交互;
2.自定义bean对象实现序列接口(Writable)
在企业开发中往往常用的基本序列化类型不能满足所有需求,比如在hadoop框架内部传递一个bean对象,那么该对象就需要实现序列化接口;
2.1 必须实现Writable接口;
2.2 反序列化,需要反射调用空参构造函数,所以必须有空参构造;
public FlowBean() { super(); }
2.3 重写序列化方法
/*序列化方法 * dataOutput 框架给我们提供的数据出口 * */ @Override public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(upFlow); dataOutput.writeLong(downFlow); dataOutput.writeLong(sumFlow); }
2.4 重写反序列化方法
/*反序列化方法 * dataInput 框架提供的数据来源 * */ @Override public void readFields(DataInput dataInput) throws IOException { upFlow=dataInput.readLong(); downFlow=dataInput.readLong(); sumFlow=dataInput.readLong(); }
3.案例
3.1 编写FlowwBean
package com.wn.flow; import org.apache.hadoop.io.Writable; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; public class FlowwBean implements Writable { private long upFlow; private long downFlow; private long sumFlow; public FlowwBean() { } @Override public String toString() { return "FlowwBean{" + "upFlow=" + upFlow + ", downFlow=" + downFlow + ", sumFlow=" + sumFlow + '}'; } public void set(long upFlow, long downFlow){ this.upFlow=upFlow; this.downFlow=downFlow; this.sumFlow=upFlow+downFlow; } public long getDownFlow() { return downFlow; } public void setDownFlow(long downFlow) { this.downFlow = downFlow; } public long getSumFlow() { return sumFlow; } public void setSumFlow(long sumFlow) { this.sumFlow = sumFlow; } public long getUpFlow() { return upFlow; } public void setUpFlow(long upFlow) { this.upFlow = upFlow; } /*序列化方法 * dataOutput 框架给我们提供的数据出口 * */ @Override public void write(DataOutput dataOutput) throws IOException { dataOutput.writeLong(upFlow); dataOutput.writeLong(downFlow); dataOutput.writeLong(sumFlow); } /*顺序要完全一致*/ /*反序列化方法 * dataInput 框架提供的数据来源 * */ @Override public void readFields(DataInput dataInput) throws IOException { upFlow=dataInput.readLong(); downFlow=dataInput.readLong(); sumFlow=dataInput.readLong(); } }
3.2 编写FlowMapper
package com.wn.flow; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import java.io.IOException; public class FlowMapper extends Mapper<LongWritable, Text,Text,FlowwBean> { private Text phone=new Text(); private FlowwBean flow=new FlowwBean(); @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] split = value.toString().split("\t"); phone.set(split[1]); long upFlow = Long.parseLong(split[split.length - 3]); long downFlow = Long.parseLong(split[split.length - 2]); flow.set(upFlow,downFlow); context.write(phone,flow); } }
3.3 编写FlowReducer
package com.wn.flow; import org.apache.hadoop.mapreduce.Reducer; import javax.xml.soap.Text; import java.io.IOException; public class FlowReducer extends Reducer<Text,FlowwBean,Text,FlowwBean> { private FlowwBean sumFlow=new FlowwBean(); @Override protected void reduce(Text key, Iterable<FlowwBean> values, Context context) throws IOException, InterruptedException { long sumUpFlow=0; long sumDownFlow=0; for (FlowwBean value:values){ sumUpFlow+=value.getUpFlow(); sumDownFlow+=value.getDownFlow(); } sumFlow.set(sumUpFlow,sumDownFlow); context.write(key,sumFlow); } }
3.4 编写FlowDriver
package com.wn.flow; import com.wn.wordcount.WcDriver; import com.wn.wordcount.WcMapper; import com.wn.wordcount.WcReducer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class FlowDriver { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { //获取一个Job实例 Job job = Job.getInstance(new Configuration()); //设置类路径 job.setJarByClass(WcDriver.class); //设置mapper和reducer job.setMapperClass(FlowMapper.class); job.setReducerClass(FlowReducer.class); //设置mapper和reducer输出类型 job.setMapOutputKeyClass(org.apache.hadoop.io.Text.class); job.setMapOutputValueClass(FlowwBean.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(FlowwBean.class); //设置输入的数据 FileInputFormat.setInputPaths(job,new Path(args[0])); FileOutputFormat.setOutputPath(job,new Path(args[1])); //提交job boolean b = job.waitForCompletion(true); System.exit(b?0:1); } }
来源:https://www.cnblogs.com/wnwn/p/12600161.html