如何挑选深度学习 GPU?
深度学习是一个对计算有着大量需求的领域,从一定程度上来说,GPU的选择将从根本上决定深度学习的体验。因此,选择购买合适的GPU是一项非常重要的决策。那么2020年,如何选择合适的GPU呢?这篇文章整合了网络上现有的GPU选择标准和评测信息,希望能作为你的购买决策的参考。
1 是什么使一个GPU比另一个GPU更快?
有一些可靠的性能指标可以作为人们的经验判断。以下是针对不同深度学习架构的一些优先准则:
Convolutional
networks and Transformers: Tensor Cores > FLOPs >
Memory Bandwidth > 16-bit capability
Recurrent
networks: Memory Bandwidth > 16-bit capability >
Tensor Cores > FLOPs
2 如何选择NVIDIA/AMD/Google
NVIDIA的标准库使在CUDA中建立第一个深度学习库变得非常容易。早期的优势加上NVIDIA强大的社区支持意味着如果使用NVIDIA GPU,则在出现问题时可以轻松得到支持。但是NVIDIA现在政策使得只有Tesla GPU能在数据中心使用CUDA,而GTX或RTX则不允许,而Tesla与GTX和RTX相比并没有真正的优势,价格却高达10倍。
AMD功能强大,但缺少足够的支持。AMD GPU具有16位计算能力,但是跟NVIDIA GPU的Tensor内核相比仍然有差距。
Google
TPU具备很高的成本效益。由于TPU具有复杂的并行基础结构,因此如果使用多个云TPU(相当于4个GPU),TPU将比GPU具有更大的速度优势。因此,就目前来看,TPU更适合用于训练卷积神经网络。
3 多GPU并行加速
卷积网络和循环网络非常容易并行,尤其是在仅使用一台计算机或4个GPU的情况下。TensorFlow和PyTorch也都非常适合并行递归。但是,包括transformer在内的全连接网络通常在数据并行性方面性能较差,因此需要更高级的算法来加速。如果在多个GPU上运行,应该先尝试在1个GPU上运行,比较两者速度。由于单个GPU几乎可以完成所有任务,因此,在购买多个GPU时,更好的并行性(如PCIe通道数)的质量并不是那么重要。
4 性能评测
1)来自Tim Dettmers的成本效益评测
[1]
https://timdettmers.com/2019/04/03/which-gpu-for-deep-learning/
卷积网络(CNN),递归网络(RNN)和transformer的归一化性能/成本数(越高越好)。RTX 2060的成本效率是Tesla V100的5倍以上。对于长度小于100的短序列,Word RNN表示biLSTM。使用PyTorch 1.0.1和CUDA 10进行基准测试。
从这些数据可以看出,RTX 2060比RTX 2070,RTX 2080或RTX 2080 Ti具有更高的成本效益。原因是使用Tensor Cores进行16位计算的能力比仅仅拥有更多Tensor Cores内核要有价值得多。
2)来自Lambda的评测
[2,3]
GPU平均加速/系统总成本
GPU性能,以每秒处理的图像为单位
以 Quadro RTX
8000 为基准的针对Quadro RTX 8000的图像模型训练吞吐量
3)
来自知乎@Aero的「在线」GPU评测
[4]
https://www.zhihu.com/question/299434830/answer/1010987691
大家用的最多的可能是Google Colab,毕竟免费,甚至能选TPU
不过现在出会员了:
免费版主要是K80,有点弱,可以跑比较简单的模型,有概率分到T4,有欧皇能分到P100。
付费就能确保是T4或者P100,一个月10美元,说是仅限美国。
Colab毕竟是Google的,那么你首先要能连得上google,并且得网络稳定,要是掉线很可能要重新训练,综合来看国内使用体验不太好。
下一个是百度AI Studio:
免费送V100时长非常良心,以前很多人自己装tensorflow用,但是现在已经不允许了,实测tensorflow pytorch都不给装,必须得用paddlepaddle。那么习惯paddlepaddle的用户完全可以选这个,其他人不适合。
不过似乎GPU不太够,白天一直提醒高峰期,真到了22点后才有。
国外的还有vast.ai:
5 建议
1)来自Tim Dettmers的建议
- 总体最佳GPU:RTX 2070 GPU
- 避免使用 :任何Tesla;任何Quadro;任何Founders Edition;Titan RTX,Titan V,Titan XP
- 高效但价格昂贵:RTX 2070
- 高效且廉价:RTX 2060,GTX 1060(6GB)
- 价格实惠:GTX 1060(6GB)
- 价格低廉:GTX 1050 Ti(4GB)。或者:CPU(原型设计)+ AWS / TPU(培训);或Colab。
- 适合Kaggle比赛:RTX 2070
- 适合计算机视觉研究人员:GTX 2080 Ti,如果训练非常大的网络,建议使用RTX Titans
2)来自Lambda的建议
截至2020年2月,以下GPU可以训练所有SOTA语言和图像模型:
- RTX 8000:48 GB VRAM
- RTX 6000:24 GB VRAM
- Titan RTX:24 GB VRAM
具体建议:
- RTX 2060(6 GB):适合业余时间探索深度学习。
- RTX 2070或2080(8 GB):适合深度学习专业研究者,且预算为4-6k
- RTX 2080 Ti(11 GB):适合深度学习专业研究者,而您的GPU预算约为8-9k。RTX 2080 Ti比RTX 2080快40%。
- Titan RTX和Quadro RTX 6000(24 GB):适合广泛使用SOTA型号,但没有用于RTX 8000足够预算的研究者。
- Quadro RTX 8000(48 GB):价格相对较高,但性能卓越,适合未来投资。
来源:https://www.cnblogs.com/wujianming-110117/p/12594314.html