python实现二叉树和它的七种遍历

时间秒杀一切 提交于 2020-03-28 18:37:16

介绍:

树是数据结构中非常重要的一种,主要的用途是用来提高查找效率,对于要重复查找的情况效果更佳,如二叉排序树、FP-树。另外可以用来提高编码效率,如哈弗曼树。 
这里写图片描述

 

 

 

代码:

用python实现树的构造和几种遍历算法,虽然不难,不过还是把代码作了一下整理总结。实现功能:

  • 树的构造
  • 递归实现先序遍历、中序遍历、后序遍历
  • 堆栈实现先序遍历、中序遍历、后序遍历
  • 队列实现层次遍历
#coding=utf-8

class Node(object):
    """节点类"""
    def __init__(self, elem=-1, lchild=None, rchild=None):
        self.elem = elem
        self.lchild = lchild
        self.rchild = rchild


class Tree(object):
    """树类"""
    def __init__(self):
        self.root = Node()
        self.myQueue = []

    def add(self, elem):
        """为树添加节点"""
        node = Node(elem)
        if self.root.elem == -1:  # 如果树是空的,则对根节点赋值
            self.root = node
            self.myQueue.append(self.root)
        else:
            treeNode = self.myQueue[0]  # 此结点的子树还没有齐。
            if treeNode.lchild == None:
                treeNode.lchild = node
                self.myQueue.append(treeNode.lchild)
            else:
                treeNode.rchild = node
                self.myQueue.append(treeNode.rchild)
                self.myQueue.pop(0)  # 如果该结点存在右子树,将此结点丢弃。


    def front_digui(self, root):
        """利用递归实现树的先序遍历"""
        if root == None:
            return
        print root.elem,
        self.front_digui(root.lchild)
        self.front_digui(root.rchild)


    def middle_digui(self, root):
        """利用递归实现树的中序遍历"""
        if root == None:
            return
        self.middle_digui(root.lchild)
        print root.elem,
        self.middle_digui(root.rchild)


    def later_digui(self, root):
        """利用递归实现树的后序遍历"""
        if root == None:
            return
        self.later_digui(root.lchild)
        self.later_digui(root.rchild)
        print root.elem,


    def front_stack(self, root):
        """利用堆栈实现树的先序遍历"""
        if root == None:
            return
        myStack = []
        node = root
        while node or myStack:
            while node:                     #从根节点开始,一直找它的左子树
                print node.elem,
                myStack.append(node)
                node = node.lchild
            node = myStack.pop()            #while结束表示当前节点node为空,即前一个节点没有左子树了
            node = node.rchild                  #开始查看它的右子树


    def middle_stack(self, root):
        """利用堆栈实现树的中序遍历"""
        if root == None:
            return
        myStack = []
        node = root
        while node or myStack:
            while node:                     #从根节点开始,一直找它的左子树
                myStack.append(node)
                node = node.lchild
            node = myStack.pop()            #while结束表示当前节点node为空,即前一个节点没有左子树了
            print node.elem,
            node = node.rchild                  #开始查看它的右子树


    def later_stack(self, root):
        """利用堆栈实现树的后序遍历"""
        if root == None:
            return
        myStack1 = []
        myStack2 = []
        node = root
        myStack1.append(node)
        while myStack1:                   #这个while循环的功能是找出后序遍历的逆序,存在myStack2里面
            node = myStack1.pop()
            if node.lchild:
                myStack1.append(node.lchild)
            if node.rchild:
                myStack1.append(node.rchild)
            myStack2.append(node)
        while myStack2:                         #将myStack2中的元素出栈,即为后序遍历次序
            print myStack2.pop().elem,


    def level_queue(self, root):
        """利用队列实现树的层次遍历"""
        if root == None:
            return
        myQueue = []
        node = root
        myQueue.append(node)
        while myQueue:
            node = myQueue.pop(0)
            print node.elem,
            if node.lchild != None:
                myQueue.append(node.lchild)
            if node.rchild != None:
                myQueue.append(node.rchild)


if __name__ == '__main__':
    """主函数"""
    elems = range(10)           #生成十个数据作为树节点
    tree = Tree()          #新建一个树对象
    for elem in elems:                  
        tree.add(elem)           #逐个添加树的节点

    print '队列实现层次遍历:'
    tree.level_queue(tree.root)

    print '\n\n递归实现先序遍历:'
    tree.front_digui(tree.root)
    print '\n递归实现中序遍历:' 
    tree.middle_digui(tree.root)
    print '\n递归实现后序遍历:'
    tree.later_digui(tree.root)

    print '\n\n堆栈实现先序遍历:'
    tree.front_stack(tree.root)
    print '\n堆栈实现中序遍历:'
    tree.middle_stack(tree.root)
    print '\n堆栈实现后序遍历:'
    tree.later_stack(tree.root)

 

 

总结:

树的遍历主要有两种,一种是深度优先遍历,像前序、中序、后序;另一种是广度优先遍历,像层次遍历。在树结构中两者的区别还不是非常明显,但从树扩展到有向图,到无向图的时候,深度优先搜索和广度优先搜索的效率和作用还是有很大不同的。 
深度优先一般用递归,广度优先一般用队列。一般情况下能用递归实现的算法大部分也能用堆栈来实现。

我印象中是有递归构造树的方法,却一直想不出该怎么构造。后来仔细想了一下,递归思想有点类似深度优先算法,而树的构造应该是广度优先的。如果用递归的话一定要有个终止条件,例如规定树深等。不然构造出来的树会偏向左单子树或者右单子树。所以一般树的构造还是应该用队列比较好。


以上说的不够严谨,有错误之处,欢迎指正!

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!