Android Art Hook 技术方案

亡梦爱人 提交于 2020-03-28 05:20:27

Android Art Hook 技术方案

 

 

 

0x1 开始

Anddroid上的ART从5.0之后变成默认的选择,可见ART的重要性,目前关于Dalvik Hook方面研究的文章很多,但我在网上却找不到关于ART Hook相关的文章,甚至连鼎鼎大名的XPosed和Cydia Substrate到目前为止也不支持ART的Hook。当然我相信,技术方案他们肯定是的,估计卡在机型适配上的了。

既然网上找不到相关的资料,于是我决定自己花些时间去研究一下,终于黃天不负有心人,我找到了一个切实可行的方法,即本文所介绍的方法。

应该说明的是本文所介绍的方法肯定不是最好的,但大家看完本文之后,如果能启发大家找到更好的ART Hook方法,那我抛砖引坏话的目的就达到了。废话不多说,我们开始吧。

运行环境: 4.4.2 ART模式的模拟器 开发环境: Mac OS X 10.10.3

0x2 ART类方法加载及执行

在ART中类方法的执行要比在Dalvik中要复杂得多,Dalvik如果除去JIT部分,可以理解为是一个解析执行的虚拟机,而ART则同时包含本地指令执行和解析执行两种模式,同时所生成的oat文件也包含两种类型,分别是portable和quick。portable和quick的主要区别是对于方法的加载机制不相同,quick大量使用了Lazy Load机制,因此应用的启动速度更快,但加载流程更复杂。其中quick是作为默认选项,因此本文所涉及的技术分析都是基于quick类型的。

由于ART存在本地指令执行和解析执行两种模式,因此类方法之间并不是能直接跳转的,而是通过一些预先定义的bridge函数进行状态和上下文的切换,这里引用一下老罗博客中的示意图:

0x3 Hook ArtMethod

通过上述ArtMethod加载和执行两个流程的分析,对于如何Hook ArtMethod,我想到了两个方案,分别

修改DexCach里的methods,把里面的entrypoint修改为自己的,做一个中转处理; 直接修改加载后的ArtMethod的entrypoint,同样做一个中转处理;

上面两个方法都是可行的,但由于我希望整个项目可以在NDK环境(而不是在源码下)下编译,因为就采用了方案2,因为通过JNI的接口就可以直接获取解析之后的ArtMethod,可以减少很多文件依赖。

回到前面的调用约定,每个ArtMethod都有两个约定,按道理我们应该准备两个中转函数的,但这里我们不考虑强制解析模式执行,所以只要处理好entry_point_from_compiled_code的中转即可。

首先,我们找到对应的方法,先保存其entrypoint,然后再把我们的中转函数art_quick_dispatcher覆盖,代码如下所示:

extern int __attribute__ ((visibility (hidden))) art_java_method_hook(JNIEnv* env, HookInfo *info) {
    const char* classDesc = info->classDesc;
    const char* methodName = info->methodName;
    const char* methodSig = info->methodSig;
    const bool isStaticMethod = info->isStaticMethod;

    // TODO we can find class by special classloader what do just like dvm
    jclass claxx = env->FindClass(classDesc);
    if(claxx == NULL){
        LOGE([-] %s class not found, classDesc);
        return -1;
    }

    jmethodID methid = isStaticMethod ?
            env->GetStaticMethodID(claxx, methodName, methodSig) :
            env->GetMethodID(claxx, methodName, methodSig);

    if(methid == NULL){
        LOGE([-] %s->%s method not found, classDesc, methodName);
        return -1;
    }

    ArtMethod *artmeth = reinterpret_cast(methid);

    if(art_quick_dispatcher != artmeth->GetEntryPointFromCompiledCode()){
        uint64_t (*entrypoint)(ArtMethod* method, Object *thiz, u4 *arg1, u4 *arg2);
        entrypoint = (uint64_t (*)(ArtMethod*, Object *, u4 *, u4 *))artmeth->GetEntryPointFromCompiledCode();

        info->entrypoint = (const void *)entrypoint;
        info->nativecode = artmeth->GetNativeMethod();

        artmeth->SetEntryPointFromCompiledCode((const void *)art_quick_dispatcher);

        // save info to nativecode :)
        artmeth->SetNativeMethod((const void *)info);

        LOGI([+] %s->%s was hooked
, classDesc, methodName);
    }else{
        LOGW([*] %s->%s method had been hooked, classDesc, methodName);
    }

    return 0;
}

我们关键的信息保存在通过ArtMethod::SetNativeMethod保存起来了。

考虑到ART特殊的调用约定,art_quick_dispatcher只能用汇编实现了,把寄存器适当的调整了一下,再跳转到另一个函数artQuickToDispatcher,这样就可以很方便用c/c++访问参数了。

先看一下art_quick_dispatcher函数的实现如下:

/*
 * Art Quick Dispatcher.
 * On entry:
 *   r0 = method pointer
 *   r1 = arg1
 *   r2 = arg2
 *   r3 = arg3
 *   [sp] = method pointer
 *   [sp + 4] = addr of thiz
 *   [sp + 8] = addr of arg1
 *   [sp + 12] = addr of arg2
 *   [sp + 16] = addr of arg3
 * and so on
 */
    .extern artQuickToDispatcher
ENTRY art_quick_dispatcher
    push    {r4, r5, lr}           @ sp - 12
    mov     r0, r0                 @ pass r0 to method
    str     r1, [sp, #(12 + 4)]
    str     r2, [sp, #(12 + 8)]
    str     r3, [sp, #(12 + 12)]
    mov     r1, r9                 @ pass r1 to thread
    add     r2, sp, #(12 + 4)      @ pass r2 to args array
    add     r3, sp, #12            @ pass r3 to old SP
    blx     artQuickToDispatcher   @ (Method* method, Thread*, u4 **, u4 **)
    pop     {r4, r5, pc}           @ return on success, r0 and r1 hold the result
END art_quick_dispatcher

我把r2指向参数数组,这样就我们就可以非常方便的访问所有参数了。另外,我用r3保存了旧的sp地址,这样是为后面调用原来的entrypoint做准备的。我们先看看artQuickToDispatcher的实现:

extern C uint64_t artQuickToDispatcher(ArtMethod* method, Thread *self, u4 **args, u4 **old_sp){
    HookInfo *info = (HookInfo *)method->GetNativeMethod();
    LOGI([+] entry ArtHandler %s->%s, info->classDesc, info->methodName);

    // If it not is static method, then args[0] was pointing to this
    if(!info->isStaticMethod){
        Object *thiz = reinterpret_cast(args[0]);
        if(thiz != NULL){
            char *bytes = get_chars_from_utf16(thiz->GetClass()->GetName());
            LOGI([+] thiz class is %s, bytes);
            delete bytes;
        }
    }

    const void *entrypoint = info->entrypoint;
    method->SetNativeMethod(info->nativecode); //restore nativecode for JNI method
    uint64_t res = art_quick_call_entrypoint(method, self, args, old_sp, entrypoint);

    JValue* result = (JValue* )&res;
    if(result != NULL){
        Object *obj = result->l;
        char *raw_class_name = get_chars_from_utf16(obj->GetClass()->GetName());

        if(strcmp(raw_class_name, java.lang.String) == 0){
            char *raw_string_value = get_chars_from_utf16((String *)obj);
            LOGI(result-class %s, result-value %s, raw_class_name, raw_string_value);
            free(raw_string_value);
        }else{
            LOGI(result-class %s, raw_class_name);
        }

        free(raw_class_name);
    }

    // entrypoid may be replaced by trampoline, only once.
//  if(method->IsStatic() && !method->IsConstructor()){

    entrypoint = method->GetEntryPointFromCompiledCode();
    if(entrypoint != (const void *)art_quick_dispatcher){
        LOGW([*] entrypoint was replaced. %s->%s, info->classDesc, info->methodName);

        method->SetEntryPointFromCompiledCode((const void *)art_quick_dispatcher);
        info->entrypoint = entrypoint;
        info->nativecode = method->GetNativeMethod();
    }

    method->SetNativeMethod((const void *)info);

//  }

    return res;
}

这里参数解析就不详细说了,接下来是最棘手的事情,如何重新调回原来的entrypoint。

这里的关键是要还原之前的堆栈布局,art_quick_call_entrypoint就是负责完成这个工作的,其实现如下所示:

/*
 *
 * Art Quick Call Entrypoint
 * On entry:
 *  r0 = method pointer
 *  r1 = thread pointer
 *  r2 = args arrays pointer
 *  r3 = old_sp
 *  [sp] = entrypoint
 */
ENTRY art_quick_call_entrypoint
    push    {r4, r5, lr}           @ sp - 12
    sub     sp, #(40 + 20)         @ sp - 40 - 20
    str     r0, [sp, #(40 + 0)]    @ var_40_0 = method_pointer
    str     r1, [sp, #(40 + 4)]    @ var_40_4 = thread_pointer
    str     r2, [sp, #(40 + 8)]    @ var_40_8 = args_array
    str     r3, [sp, #(40 + 12)]   @ var_40_12 = old_sp
    mov     r0, sp
    mov     r1, r3
    ldr     r2, =40
    blx     memcpy                 @ memcpy(dest, src, size_of_byte)
    ldr     r0, [sp, #(40 + 0)]    @ restore method to r0
    ldr     r1, [sp, #(40 + 4)]
    mov     r9, r1                 @ restore thread to r9
    ldr     r5, [sp, #(40 + 8)]    @ pass r5 to args_array
    ldr     r1, [r5]               @ restore arg1
    ldr     r2, [r5, #4]           @ restore arg2
    ldr     r3, [r5, #8]           @ restore arg3
    ldr     r5, [sp, #(40 + 20 + 12)] @ pass ip to entrypoint
    blx     r5
    add     sp, #(40 + 20)
    pop     {r4, r5, pc}           @ return on success, r0 and r1 hold the result
END art_quick_call_entrypoint

这里我偷懒了,直接申请了10个参数的空间,再使用之前传进入来的old_sp进行恢复,使用memcpy直接复制40字节。之后就是还原r0, r1, r2, r3, r9的值了。调用entrypoint完后,结果保存在r0和r1,再返回给artQuickToDispatcher。

至此,整个ART Hook就分析完毕了。

0x4 4.4与5.X上实现的区别

我的整个方案都是在4.4上测试的,主要是因为我只有4.4的源码,而且硬盘空间不足,实在装不下5.x的源码了。但整个思路,是完全可以套用用5.X上。另外,5.X的实现代码比4.4上复杂了很多,否能像我这样在NDK下编译完成就不知道了。

正常的4.4模拟器是以dalvik启动的,要到设置里改为art,这里会要求进行重启,但一般无效,我们手动关闭再重新打开就OK了,但需要等上一段时间才可以。

0x5 结束

虽然这篇文章只是介绍了Art Hook的技术方案,但其中的技术原理,对于如何在ART上进行代码加固、动态代码原理等等也是很有启发性。

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!