Leetcode 480.滑动窗口中位数

。_饼干妹妹 提交于 2020-03-27 18:28:03

滑动窗口中位数

中位数是有序序列最中间的那个数。如果序列的大小是偶数,则没有最中间的数;此时中位数是最中间的两个数的平均数。

例如:

[2,3,4],中位数是 3

[2,3],中位数是 (2 + 3) / 2 = 2.5

给出一个数组 nums,有一个大小为 k 的窗口从最左端滑动到最右端。窗口中有 k 个数,每次窗口移动 1 位。你的任务是找出每次窗口移动后得到的新窗口中元素的中位数,并输出由它们组成的数组。

例如:

给出 nums = [1,3,-1,-3,5,3,6,7],以及 k = 3。

窗口位置 中位数

--------------- -----

[1 3 -1] -3 5 3 6 7 1

1 [3 -1 -3] 5 3 6 7 -1

1 3 [-1 -3 5] 3 6 7 -1

1 3 -1 [-3 5 3] 6 7 3

1 3 -1 -3 [5 3 6] 7 5

1 3 -1 -3 5 [3 6 7] 6

 因此,返回该滑动窗口的中位数数组 [1,-1,-1,3,5,6]。

提示:
假设k是合法的,即:k 始终小于输入的非空数组的元素个数.

 

 

解题思想

题目会给一个数组,和一个滑动窗口的大小K,让你找出当这个窗口滑动的过程中,这个K的窗口内的中位数分别是多少?

 

最naive的方式就是在k个窗口内排序就好,这里不解释(因为开销很大啊,(n-k+1) * (k*log(k))。。

 

这里的方法是使用两个优先队列,即出队列的顺序是按照某种排好序的方式进行的。

所以我们设立两个优先队列,这里叫做堆吧:

1、最大堆,值大的先出来

2、最小堆:值小的先出来

 

那么回到我们的问题,我们想想如何确定中位数:

1、假设我们有上述最大堆,最小堆

2、如果我们把进入的所有值较小的一半放到最大堆,较大的一半放到最小堆中,那么较小的那一半poll出来的,和较大那一半poll出来的,不正好是k个窗口的中位数的候选值么?

3、按照上面那个思想,我们就行动,再输入值得时候,根据其大小,放入最大堆或者最小堆中,然后调整一些大小,保证最大堆那边的大小等于或者多一个于最小堆

4、当输出的时候,也就是从最大堆取一个,或者双方各取一个就可以计算了

5、删除的时候,在对应的堆中删除,再按照3中的方式更新下就好

 

 1 import java.util.Collections;
 2 import java.util.PriorityQueue;
 3 
 4 public class Solution {
 5     public double[] medianSlidingWindow(int[] nums, int k) {
 6         int n = nums.length;
 7         int m = n - k + 1;
 8         // 结果的尺寸
 9         double[] res = new double[m];
10         //两个堆,一个最大堆,一个最小
11         PriorityQueue<Integer> maxHeap = new PriorityQueue<Integer>(k, Collections.reverseOrder());
12         PriorityQueue<Integer> minHeap = new PriorityQueue<Integer>(k);
13         for (int i = 0; i<n; i++){
14             int num = nums[i];
15             // 让maxHeap始终保存小于一半的值,minHeap保存大于一半的,正好两半
16             if( maxHeap.size() == 0 || maxHeap.peek() >= num) maxHeap.add(num);
17             else minHeap.add(num);
18             // 维护两个堆,保证两个堆得大小,要么保持一致(偶数时),要么maxHeap多一个(奇数时)
19             if( minHeap.size() > maxHeap.size() ) maxHeap.add(minHeap.poll());
20             if( maxHeap.size() > minHeap.size() + 1 ) minHeap.add(maxHeap.poll());
21             // 如果需要输出
22             if ( i-k+1 >=0 ){
23                 if( k % 2 == 1 ) res[i- k + 1] = maxHeap.peek();
24                 else res[i- k + 1] = (maxHeap.peek()/2.0 + minHeap.peek()/2.0);
25                 // 小心溢出
26                 // 移除并更新
27                 int toBeRemove = nums[i - k + 1];
28                 if( toBeRemove <= maxHeap.peek()) maxHeap.remove(toBeRemove);
29                 else minHeap.remove(toBeRemove);
30                 // 维护两个堆,保证两个堆得大小,要么保持一致(偶数时),要么maxHeap多一个(奇数时)
31                 if( minHeap.size() > maxHeap.size() ) maxHeap.add(minHeap.poll());
32                 if( maxHeap.size() > minHeap.size() + 1 ) minHeap.add(maxHeap.poll());
33             }
34         }
35         return res;
36     }
37 }

 

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!