1057. Stack (30) - 树状数组

☆樱花仙子☆ 提交于 2020-03-26 06:32:48

题目如下:

Stack is one of the most fundamental data structures, which is based on the principle of Last In First Out (LIFO). The basic operations include Push (inserting an element onto the top position) and Pop (deleting the top element). Now you are supposed to implement a stack with an extra operation: PeekMedian -- return the median value of all the elements in the stack. With N elements, the median value is defined to be the (N/2)-th smallest element if N is even, or ((N+1)/2)-th if N is odd.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (<= 105). Then N lines follow, each contains a command in one of the following 3 formats:

Push key
Pop
PeekMedian

where key is a positive integer no more than 105.

Output Specification:

For each Push command, insert key into the stack and output nothing. For each Pop or PeekMedian command, print in a line the corresponding returned value. If the command is invalid, print "Invalid" instead.

Sample Input:
17
Pop
PeekMedian
Push 3
PeekMedian
Push 2
PeekMedian
Push 1
PeekMedian
Pop
Pop
Push 5
Push 4
PeekMedian
Pop
Pop
Pop
Pop
Sample Output:
Invalid
Invalid
3
2
2
1
2
4
4
5
3
Invalid


这个题目我最初用的是string、stringstream和vector来做,发现会严重超时,后来在网上参考了和山米兰的解法,发现他的方法很有技巧,分析如下:

①对命令的解析,只看第二位,如果是o,说明是Pop,如果是e,说明是PeekMedian,否则是push,是push则应当再读入一次数字,这比用getline要好的多,因为getline还需要排除第一个输入的N。

②求中位数的思想,不是排序找中间的值,而是通过统计从1开始的每个元素的个数放到数组C中,这样从前到后,数组C的子列和为题目要求的位置时,拿到的就是中位数。

③求子列和的思想,因为是从前到后的前缀和,可以利用树状数组,下面的代码利用add实现了添加和删除两种操作,利用value的不同,1表示添加,2表示删除。树状数组的基本思想就是数组C中不同元素管辖不同的区域,如果要添加一个元素,则所有满足区域条件的位置都要+value,反之如果删除,所有满足条件的区域都要-value。本题要求的是统计1~100000的元素个数,因此value=+1或者-1。

④求子列和为题目要求的值,利用二分查找。

#include<stdio.h>
#include<cstring>
#include<iostream>
#include<string>
using namespace std;

const int N=100001;
int c[N];

int lowbit(int i){
	return i&(-i);
}

void add(int pos,int value){
	while(pos<N){
		c[pos]+=value;
		pos+=lowbit(pos);
	}
}

int sum(int pos){
	int res=0;
	while(pos>0){
		res+=c[pos];
		pos-=lowbit(pos);
	}
	return res;
}

int find(int value){
	int l=0,r=N-1,median,res;
	while(l<r-1){
		if((l+r)%2==0)
			median=(l+r)/2;
		else
			median=(l+r-1)/2;
		res=sum(median);
		if(res<value)
			l = median;
		else
			r = median;

	}
	return l+1;
}

int main(){
	char ss[20];
	int stack[N],top=0,n,pos;
	memset(c,0,sizeof(c));
	scanf("%d",&n);
	while(n--){
		scanf("%s",ss);
		if(ss[1]=='u'){
			scanf("%d",&pos);
			stack[++top]=pos;
			add(pos,1);
		}else if(ss[1]=='o'){
			if(top==0){
				printf("Invalid\n");
				continue;
			}
			int out=stack[top];
			add(out,-1); // 删除元素out
			printf("%d\n",stack[top--]);
		}else if(ss[1]=='e'){
			if(top==0){
				printf("Invalid\n");
				continue;
			}
			int res;
			if(top%2==0)
				res=find(top/2);
			else
				res=find((top+1)/2);
			printf("%d\n",res);

		}else{
			printf("Invalid\n");
		}
	}

	return 0;
}



标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!