支持向量机(support vector machine,SVM)是一种二分类模型。它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使其有别于感知机。支持向量机还包括核技巧,使它成为实质上的非线性分类器。支持向量机的学习策略就是间隔最大化,可形式化为一个求解凸二次规划问题,也等价于正则化的合页损失函数的最小化问题。支持向量机的学习算法是求解凸二次规划的最优化算法。
1. 线性可分支持向量机与硬间隔最大化
1.1 线性可分支持向量机
考虑一个二分类问题,假设输入空间与特征空间为两个不同的空间。输入空间为欧式空间或离散集合,特征空间为欧式空间或希尔伯特空间。线性可分支持向量机、线性支持向量机假设这两个空间的元素一一对应。并将输入空间的输入映射为输出空间的特性向量。非线性支持向量机利用一个从输入空间到特征空间的非线性映射将输入映射为特性向量。所以,输入都由输入空间转换到特性空间,支持向量机的学习是在特征空间进行的。
假设给定一个特征空间上的训练数据集如下:
$T=\left \{ \left ( x_{1},y_{1} \right ),\left ( x_{2},y_{2} \right ),...,\left ( x_{N},y_{N} \right ) \right \}$
其中,,,,$x_{i}$为第$i$个特征向量,也称为实例,$y_{i}$为$x_{i}$的类标记,当$y_{i}=+1$时,称$x_{i}$为正例;当$y_{i}=-1$时,称$x_{i}$为负例,$\left ( x_{i},y_{i} \right )$称为样本点。假设训练数据集是线性可分的。
来源:https://www.cnblogs.com/xjlearningAI/p/12459457.html