RYU 灭龙战 third day

♀尐吖头ヾ 提交于 2020-03-24 07:59:57

RYU 灭龙战 third day

前言

传统的交换机有自学习能力。然而你知道在SDN的世界里,脑子空空的OpenFlow交换机是如何学习的吗?今日说法带你领略SDN的mac学习能力。

RYUBook从中学习

场景描述

传统交换机原理

  • 学习连接到传统交换机的主机的mac地址,并把其存在mac地址表中
  • 对于已经记录下来的mac地址,若是收到送往该mac地址的数据包时,就往对应的端口进行转发
  • 对于mac地址表中没有的数据包,则进行flooding

OpenFlow交换机实现传统交换机功能

  • 对于接收到的数据包针对指定的端口转发
  • 把接收到的数据包发送给控制器(Packet-In)
  • 把从控制器接收到的数据包转发到指定的端口(Packet-Out)

图示

1.初始状态

mac地址表和交换机的流表均为空的表项

2.Host A -> Host B

当Host A 向 Host B 发送数据包时。这个时候会出发PacketIn消息。Host A的mac地址以及对应的端口会记录到mac地址表内。然后由于Host B的mac不在mac地址表内,此时会flooding

3.Host B -> Host A

数据包从host B回复给Host B时,在Flow table上新增一条流表,讲数据包转发给端口1

4.Host A -> Host B

再次由主机A向主机B发送数据包,新增流表,将数据包转发到端口4

场景实现

代码附录(附加注释)simple_switch_13.py

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    #OF版本为1.3
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    #初始化函数
    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        #MAC地址表的定义
        self.mac_to_port = {}

    #"ryu.controller.handler.set_ev_cls作为修饰器,参数为指定事件类别的接受信息,以及交换机的状态
    #此时接收到的是SwitchFeatures,即交换机的功能,CONFIG_DISPATCHER则是交换机的状态为接收SwitchFeatures消息
    #每一个事件管理(Envent Handler)都需要有一个事件event作为参数
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        #ev.msg是用来存对应事件的OpenFlow消息类别实体,这里指的是OFPSwitchFeatures
        #datapath是用来处理OpenFlow交换机重要的消息,比如与交换机的通讯和触发接收消息相关的实践
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.

        #下发Table-miss Flow Entry优先级为0的流表,即如果报文都没有匹配的话,则匹配该报文,并将其发送给控制器
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)


    #add_flow方法用来发送Flow Mod消息
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        #用FlowMod消息去更新,增加,删除流表
        datapath.send_msg(mod)


    #处理Packet-in数据包,交换机状态为一般状态
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        #match用来存储数据包的Meta元数据
        in_port = msg.match['in_port']

        #data接受数据包本身的消息
        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        #忽略LLDP数据包
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        #源目mac
        dst = eth.dst
        src = eth.src
        #id为交换机的id
        dpid = datapath.id
        #更新mac地址表,每台交换机独立的dpid对应一个表
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        #学习mac地址表,源mac和端口对应起来
        self.mac_to_port[dpid][src] = in_port

        #如果目的mac在mac地址表里面,则将出端口置位对应目的mac对应的端口,否则就泛洪flooding
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        #下发对应的目的端口到目的mac的流表,优先级为1,比之前的table_miss的优先级高
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        #将经过上述处理的消息通过PacketOut数据包发送给交换机
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)

运行测试

  • 一个终端执行
sudo mn --topo single,3 --mac --switch ovsk,protocols=OpenFlow13 --controller remote

  • 另一终端执行
sudo ovs-vsctl show

继续执行,查看交换机流表

sudo ovs-ofctl -O OpenFlow13 dump-flows s1 

  • 在mininet端执行pingall,结果可想肯定是丢包

  • 再开一个终端,开启RYU

进入到RYU目录下,执行

ryu-manager --verbose ryu.app.simple_switch_13

  • 在ovs端查看流表
sudo ovs-ofctl -O OpenFlow13 dump-flows s1 

如今正如代码所示 Table-miss Flow Entry 加入OVS

  • mininet端
h1 ping -c1 h2

ping通

  • 再次查看OVS流表
sudo ovs-ofctl -O OpenFlow13 dump-flows s1 

  • 查看ryu端的新增输出

共发出三次PacketIn,下发三次流表

总结

1、相比与传统交换机,OpenFlow交换机的mac地址表维护都是在控制器内部。控制器的压力实在是太大了,毕竟可能要管理多台交换机;

2、借鉴该应用中,处理对应OpenFlow数据包的方法,接下来可以做一些相应的尝试。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!