Google KickStart 2020 RoundA

。_饼干妹妹 提交于 2020-03-23 12:26:57

第一题:Allocation

题意:N个房子,第i个房子价格为Ai美元,用B美元最多买几个房子。

Limit:

1 ≤ T ≤ 100.
1 ≤ B ≤ 10^5.
1 ≤ Ai ≤ 1000, for all i.
1 ≤ N ≤ 10^5.

分析:按价格从小到大排序即可。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
int a[MAXN];
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        int N, B;
        scanf("%d%d", &N, &B);
        for(int i = 0; i < N; ++i){
            scanf("%d", &a[i]);
        }
        sort(a, a + N);
        int sum = 0;
        int cnt = 0;
        for(int i = 0; i < N; ++i){
            if(sum + a[i] <= B){
                sum += a[i];
                ++cnt;
            }
            else break;
        }
        printf("Case #%d: %d\n", Case, cnt);
    }
    return 0;
}

第二题:Plates

题意:有N堆盘子,每堆k个盘子,每个盘子有个beauty value。当拿某个盘子时,该盘子之上的盘子也会被拿起。问当拿P个盘子时,能获得最大的beauty value值。

Limit:

1 ≤ T ≤ 100.
1 ≤ K ≤ 30.
1 ≤ P ≤ N * K.
The beauty values are between 1 and 100, inclusive.
1 ≤ N ≤ 50.

分析:dp[i][j]表示前i堆拿j个盘子能获得的最大beauty value值。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
int a[55][35];
int dp[55][1510];   //dp数组第二维比赛时开小了
int sum[55][35];
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        int N, K, P;
        scanf("%d%d%d", &N, &K, &P);
        memset(sum, 0, sizeof sum);
        for(int i = 1; i <= N; ++i){
            for(int j = 1; j <= K; ++j){
                scanf("%d", &a[i][j]);
                sum[i][j] = sum[i][j - 1] + a[i][j];
            }
        }
        memset(dp, 0, sizeof dp);
        for(int i = 1; i <= N; ++i){
            for(int j = 0; j <= P; ++j){
                dp[i][j] = max(dp[i][j], dp[i - 1][j]);
                for(int k = 1; k <= K && k <= j; ++k){
                    dp[i][j] = max(dp[i][j], dp[i - 1][j - k] + sum[i][k]);
                }
            }
        }
        printf("Case #%d: %d\n", Case, dp[N][P]);
    }
    return 0;
}

优化一下,只开一维dp数组~

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
int a[55][35];
int dp[1510];
int sum[55][35];
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        int N, K, P;
        scanf("%d%d%d", &N, &K, &P);
        memset(sum, 0, sizeof sum);
        for(int i = 1; i <= N; ++i){
            for(int j = 1; j <= K; ++j){
                scanf("%d", &a[i][j]);
                sum[i][j] = sum[i][j - 1] + a[i][j];
            }
        }
        memset(dp, 0, sizeof dp);
        for(int i = 1; i <= N; ++i){
            for(int j = P; j >= 0; --j){
                for(int k = 1; k <= K && k <= j; ++k){
                    dp[j] = max(dp[j], dp[j - k] + sum[i][k]);
                }
            }
        }
        printf("Case #%d: %d\n", Case, dp[P]);
    }
    return 0;
}

第三题:Workout

题意:有N个session,每个session长达Mi分钟。定义diff为相邻session差值的最大值,要求增加至多K个session,使得diff最小,求最小的diff。(N个session的时长是严格递增的,要求增加k个session后,所有session时长也是严格递增的)

Limit:

1 ≤ T ≤ 100.
For at most 10 test cases, 2 ≤ N ≤ 10^5.
For all other test cases, 2 ≤ N ≤ 300.
1 ≤ Mi ≤ 10^9.
Mi < Mi+1 for all i.
1 ≤ K ≤ 10^5.

分析:二分diff求右临界值即可。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
int a[MAXN];
int N, K;
bool judge(int x){
    int cnt = 0;
    for(int i = 2; i <= N; ++i){
        if(a[i] - a[i - 1] > x){
            int tmp = a[i - 1];
            while(tmp + x < a[i]){
                ++cnt;
                if(cnt > K) return false;
                tmp += x;
            }
        }
    }
    return true;
}
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        scanf("%d%d", &N, &K);
        int diff = 0;
        for(int i = 1; i <= N; ++i){
            scanf("%d", &a[i]);
            if(i > 1){
                diff = max(diff, a[i] - a[i - 1]);
            }
        }
        int l = 1;
        int r = diff;
        while(l < r){
            int mid = l + (r - l) / 2;
            if(judge(mid)) r = mid;
            else l = mid + 1;
        }
        printf("Case #%d: %d\n", Case, r);
    }
    return 0;
}

第四题:Bundling

题意:有N个字符串,每个字符串只包含字母A~Z,要求把字符串按K个一组进行分组,每个字符串只能分到一个组中。分好后,每个组的score为该组所有字符串的最长公共前缀。问分组后每个组的score之和的最大值。

Limit:

1 ≤ T ≤ 100.
2 ≤ N ≤ 105.
2 ≤ K ≤ N.
K divides N.
Each of Pip's strings contain at least one character.
Each string consists only of letters from A to Z.
The total number of characters in Pip's strings across all test cases is at most 2 × 106.

分析:

(1)对于N个字符串中所有可能的前缀来说,假如某个前缀p存在于cnt个字符串中,则它对最终答案的贡献是cnt/K。累加所有的前缀贡献即可。

(2)计算每个前缀存在于多少个字符串中,用Trie树即可。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
struct TreeNode{
    int val;
    TreeNode *nex[26];
    TreeNode(){
        val = 0;
        for(int i = 0; i < 26; ++i) nex[i] = NULL;
    }
};
string s[MAXN];
void build(string x, TreeNode* root){
    int len = x.size();
    for(int i = 0; i < len; ++i){
        int cur = x[i] - 'A';
        if(root -> nex[cur] == NULL){
            root -> nex[cur] = new TreeNode();
        }
        root = root -> nex[cur];
        ++root -> val;
    }
}
int bfs(TreeNode* root, int K){
    int ans = 0;
    queue<TreeNode*> q;
    q.push(root);
    while(!q.empty()){
        TreeNode *cur = q.front();
        q.pop();
        ans += cur -> val / K;
        for(int i = 0; i < 26; ++i){
            if(cur -> nex[i] != NULL){
                q.push(cur -> nex[i]);
            }
        }
    }
    return ans;
}
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        int N, K;
        scanf("%d%d", &N, &K);
        TreeNode *root = new TreeNode();
        for(int i = 0; i < N; ++i){
            cin >> s[i];
            build(s[i], root);
        }
        printf("Case #%d: %d\n", Case, bfs(root, K));
    }
    return 0;
}

也可以省掉bfs~

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#include<string>
#include<iostream>
#include<set>
#include<map>
#include<stack>
#include<queue>
#include<vector>
#include<sstream>
typedef long long LL;
const int INF = 0x3f3f3f3f;
using namespace std;
const int MAXN = 100000 + 10;
const double eps = 1e-8;
int dcmp(double a, double b){
    if(fabs(a - b) < eps) return 0;
    return a < b ? -1 : 1;
}
struct TreeNode{
    int val;
    TreeNode *nex[26];
    TreeNode(){
        val = 0;
        for(int i = 0; i < 26; ++i) nex[i] = NULL;
    }
};
string s[MAXN];
void build(string x, TreeNode* root, int K, int &ans){
    int len = x.size();
    for(int i = 0; i < len; ++i){
        int cur = x[i] - 'A';
        if(root -> nex[cur] == NULL){
            root -> nex[cur] = new TreeNode();
        }
        root = root -> nex[cur];
        ++root -> val;
        if(root -> val == K){
            ++ans;
            root -> val = 0;
        }
    }
}
int main(){
    int T;
    scanf("%d", &T);
    for(int Case = 1; Case <= T; ++Case){
        int N, K;
        scanf("%d%d", &N, &K);
        TreeNode *root = new TreeNode();
        int ans = 0;
        for(int i = 0; i < N; ++i){
            cin >> s[i];
            build(s[i], root, K, ans);
        }
        printf("Case #%d: %d\n", Case, ans);
    }
    return 0;
}

  

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!